在 TensorFlow.org 上查看 | 在 Google Colab 中运行 | 在 GitHub 上查看源代码 | 下载笔记本 |
在本示例中,我们将展示如何使用 TFP 的“概率层”拟合变分自动编码器。
依赖项和先决条件
导入
加速!
在深入研究之前,让我们确保我们正在使用 GPU 进行此演示。
为此,请选择“运行时”->“更改运行时类型”->“硬件加速器”->“GPU”。
以下代码段将验证我们是否可以访问 GPU。
if tf.test.gpu_device_name() != '/device:GPU:0':
print('WARNING: GPU device not found.')
else:
print('SUCCESS: Found GPU: {}'.format(tf.test.gpu_device_name()))
SUCCESS: Found GPU: /device:GPU:0
加载数据集
datasets, datasets_info = tfds.load(name='mnist',
with_info=True,
as_supervised=False)
def _preprocess(sample):
image = tf.cast(sample['image'], tf.float32) / 255. # Scale to unit interval.
image = image < tf.random.uniform(tf.shape(image)) # Randomly binarize.
return image, image
train_dataset = (datasets['train']
.map(_preprocess)
.batch(256)
.prefetch(tf.data.AUTOTUNE)
.shuffle(int(10e3)))
eval_dataset = (datasets['test']
.map(_preprocess)
.batch(256)
.prefetch(tf.data.AUTOTUNE))
请注意,上面的 preprocess() 返回 image, image
而不是仅 image
,因为 Keras 是为具有 (示例,标签) 输入格式的判别模型而设置的,即 \(p\theta(y|x)\)。由于 VAE 的目标是从 x 本身恢复输入 x(即 \(p_\theta(x|x)\)),因此数据对为 (示例,示例)。
VAE 代码高尔夫
指定模型。
input_shape = datasets_info.features['image'].shape
encoded_size = 16
base_depth = 32
prior = tfd.Independent(tfd.Normal(loc=tf.zeros(encoded_size), scale=1),
reinterpreted_batch_ndims=1)
encoder = tfk.Sequential([
tfkl.InputLayer(input_shape=input_shape),
tfkl.Lambda(lambda x: tf.cast(x, tf.float32) - 0.5),
tfkl.Conv2D(base_depth, 5, strides=1,
padding='same', activation=tf.nn.leaky_relu),
tfkl.Conv2D(base_depth, 5, strides=2,
padding='same', activation=tf.nn.leaky_relu),
tfkl.Conv2D(2 * base_depth, 5, strides=1,
padding='same', activation=tf.nn.leaky_relu),
tfkl.Conv2D(2 * base_depth, 5, strides=2,
padding='same', activation=tf.nn.leaky_relu),
tfkl.Conv2D(4 * encoded_size, 7, strides=1,
padding='valid', activation=tf.nn.leaky_relu),
tfkl.Flatten(),
tfkl.Dense(tfpl.MultivariateNormalTriL.params_size(encoded_size),
activation=None),
tfpl.MultivariateNormalTriL(
encoded_size,
activity_regularizer=tfpl.KLDivergenceRegularizer(prior)),
])
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/linalg/linear_operator_lower_triangular.py:158: calling LinearOperator.__init__ (from tensorflow.python.ops.linalg.linear_operator) with graph_parents is deprecated and will be removed in a future version. Instructions for updating: Do not pass `graph_parents`. They will no longer be used. WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/ops/linalg/linear_operator_lower_triangular.py:158: calling LinearOperator.__init__ (from tensorflow.python.ops.linalg.linear_operator) with graph_parents is deprecated and will be removed in a future version. Instructions for updating: Do not pass `graph_parents`. They will no longer be used.
decoder = tfk.Sequential([
tfkl.InputLayer(input_shape=[encoded_size]),
tfkl.Reshape([1, 1, encoded_size]),
tfkl.Conv2DTranspose(2 * base_depth, 7, strides=1,
padding='valid', activation=tf.nn.leaky_relu),
tfkl.Conv2DTranspose(2 * base_depth, 5, strides=1,
padding='same', activation=tf.nn.leaky_relu),
tfkl.Conv2DTranspose(2 * base_depth, 5, strides=2,
padding='same', activation=tf.nn.leaky_relu),
tfkl.Conv2DTranspose(base_depth, 5, strides=1,
padding='same', activation=tf.nn.leaky_relu),
tfkl.Conv2DTranspose(base_depth, 5, strides=2,
padding='same', activation=tf.nn.leaky_relu),
tfkl.Conv2DTranspose(base_depth, 5, strides=1,
padding='same', activation=tf.nn.leaky_relu),
tfkl.Conv2D(filters=1, kernel_size=5, strides=1,
padding='same', activation=None),
tfkl.Flatten(),
tfpl.IndependentBernoulli(input_shape, tfd.Bernoulli.logits),
])
vae = tfk.Model(inputs=encoder.inputs,
outputs=decoder(encoder.outputs[0]))
进行推理。
negloglik = lambda x, rv_x: -rv_x.log_prob(x)
vae.compile(optimizer=tf_keras.optimizers.Adam(learning_rate=1e-3),
loss=negloglik)
_ = vae.fit(train_dataset,
epochs=15,
validation_data=eval_dataset)
Epoch 1/15 235/235 [==============================] - 14s 61ms/step - loss: 206.5541 - val_loss: 163.1924 Epoch 2/15 235/235 [==============================] - 14s 59ms/step - loss: 151.1891 - val_loss: 143.6748 Epoch 3/15 235/235 [==============================] - 14s 58ms/step - loss: 141.3275 - val_loss: 137.9188 Epoch 4/15 235/235 [==============================] - 14s 58ms/step - loss: 136.7453 - val_loss: 133.2726 Epoch 5/15 235/235 [==============================] - 14s 58ms/step - loss: 132.3803 - val_loss: 131.8343 Epoch 6/15 235/235 [==============================] - 14s 58ms/step - loss: 129.2451 - val_loss: 127.1935 Epoch 7/15 235/235 [==============================] - 14s 59ms/step - loss: 126.0975 - val_loss: 123.6789 Epoch 8/15 235/235 [==============================] - 14s 58ms/step - loss: 124.0565 - val_loss: 122.5058 Epoch 9/15 235/235 [==============================] - 14s 58ms/step - loss: 122.9974 - val_loss: 121.9544 Epoch 10/15 235/235 [==============================] - 14s 58ms/step - loss: 121.7349 - val_loss: 120.8735 Epoch 11/15 235/235 [==============================] - 14s 58ms/step - loss: 121.0856 - val_loss: 120.1340 Epoch 12/15 235/235 [==============================] - 14s 58ms/step - loss: 120.2232 - val_loss: 121.3554 Epoch 13/15 235/235 [==============================] - 14s 58ms/step - loss: 119.8123 - val_loss: 119.2351 Epoch 14/15 235/235 [==============================] - 14s 58ms/step - loss: 119.2685 - val_loss: 118.2133 Epoch 15/15 235/235 [==============================] - 14s 59ms/step - loss: 118.8895 - val_loss: 119.4771
看,没有 手张量!
# We'll just examine ten random digits.
x = next(iter(eval_dataset))[0][:10]
xhat = vae(x)
assert isinstance(xhat, tfd.Distribution)
图像绘图实用程序
print('Originals:')
display_imgs(x)
print('Decoded Random Samples:')
display_imgs(xhat.sample())
print('Decoded Modes:')
display_imgs(xhat.mode())
print('Decoded Means:')
display_imgs(xhat.mean())
Originals:
Decoded Random Samples:
Decoded Modes:
Decoded Means:
# Now, let's generate ten never-before-seen digits.
z = prior.sample(10)
xtilde = decoder(z)
assert isinstance(xtilde, tfd.Distribution)
print('Randomly Generated Samples:')
display_imgs(xtilde.sample())
print('Randomly Generated Modes:')
display_imgs(xtilde.mode())
print('Randomly Generated Means:')
display_imgs(xtilde.mean())
Randomly Generated Samples:
Randomly Generated Modes:
Randomly Generated Means: