自动超参数调优

在 TensorFlow.org 上查看 在 Google Colab 中运行 在 GitHub 上查看 下载笔记本

欢迎来到 **自动超参数调优** 教程。在这个 Colab 中,您将学习如何使用 TensorFlow 决策森林的自动超参数调优来改进您的模型。

更确切地说,我们将

  1. 训练一个 **没有超参数调优** 的模型。此模型将用于衡量超参数调优的质量改进。
  2. 使用 **TF-DF 的调优器** 训练一个 **带有超参数调优** 的模型。要优化的超参数将 **手动定义**。
  3. 使用 **TF-DF 的调优器** 训练另一个 **带有超参数调优** 的模型。但这次,要优化的超参数将 **自动设置**。**这是使用超参数调优时推荐的首选方法。**
  4. 最后,我们将使用 **Keras 的调优器** 训练一个 **带有超参数调优** 的模型。

简介

学习算法在训练数据集上训练机器学习模型。学习算法的参数(称为“超参数”)控制模型的训练方式并影响其质量。因此,找到最佳超参数是建模的重要阶段。

一些超参数很容易配置。例如,在随机森林中增加树木数量(num_trees)会提高模型质量,直到达到一个平台期。因此,设置与服务约束兼容的最大值(更多树木意味着更大的模型)是一个有效的经验法则。但是,其他超参数与模型的交互更复杂,无法用如此简单的规则来选择。例如,增加梯度提升树模型的最大树深度(max_depth)既可以提高模型质量,也可以降低模型质量。此外,超参数之间可以相互影响,超参数的最佳值无法孤立地找到。

选择超参数值的主要方法有三种

  1. **默认方法**:学习算法带有默认值。虽然在所有情况下都不理想,但在大多数情况下,这些值会产生合理的结果。建议将此方法作为任何建模中使用的第一种方法。此页面 列出了 TF 决策森林的默认值。

  2. **模板超参数方法**:除了默认值之外,TF 决策森林还公开了超参数模板。这些是经过基准测试的超参数值,具有出色的性能,但训练成本高(例如,hyperparameter_template="benchmark_rank1")。

  3. **手动调优方法**:您可以手动测试不同的超参数值,并选择性能最佳的值。 本指南 提供了一些建议。

  4. **自动调优方法**:可以使用调优算法自动找到最佳超参数值。这种方法通常会产生最佳结果,并且不需要专业知识。这种方法的主要缺点是它在大型数据集上花费的时间。

在这个 Colab 中,我们展示了使用 TensorFlow 决策森林库的 **默认** 和 **自动调优** 方法。

超参数调优算法

自动调优算法通过生成和评估大量超参数值来工作。每次迭代都称为“试验”。试验的评估很昂贵,因为它每次都需要训练一个新模型。在调优结束时,将使用评估最佳的超参数。

调优算法配置如下

搜索空间

搜索空间是要优化的超参数列表以及它们可以取的值。例如,树的最大深度可以优化为 1 到 32 之间的值。探索更多超参数和更多可能的值通常会导致更好的模型,但也需要更多时间。超参数在 文档 中列出。

当一个超参数的可能值取决于另一个超参数的值时,搜索空间被称为条件搜索空间。

试验次数

试验次数定义了将训练和评估多少个模型。试验次数越多,通常会导致更好的模型,但需要更多时间。

优化器

优化器根据过去试验评估结果选择下一个超参数进行评估。最简单且通常合理的优化器是随机选择超参数的优化器。

目标/试验得分

目标是调优器优化的指标。通常,此指标是模型在验证数据集上评估的质量度量(例如,准确率、对数损失)。

训练-验证-测试

验证数据集应与训练数据集不同:如果训练和验证数据集相同,则选择的超参数将无关紧要。验证数据集也应与测试数据集(也称为保留数据集)不同:因为超参数调优是一种训练形式,如果测试和验证数据集相同,则实际上是在测试数据集上进行训练。在这种情况下,您可能会在测试数据集上过度拟合,而无法进行衡量。

交叉验证

对于小型数据集(例如,少于 100,000 个示例的数据集),超参数调优可以与交叉验证结合使用:目标/试验得分不是从单个训练-测试回合中评估,而是作为多个交叉验证回合中指标平均值的评估。

与训练-验证和测试数据集类似,用于在超参数调优期间评估目标/得分的交叉验证应与用于评估模型质量的交叉验证不同。

包外评估

某些模型(例如随机森林)可以使用“包外评估”方法在训练数据集上进行评估。虽然不如交叉验证准确,但“包外评估”比交叉验证快得多,并且不需要单独的验证数据集。

在 TensorFlow 决策森林中

在 TF-DF 中,模型的"自我"评估始终是评估模型的公平方法。例如,包外评估用于随机森林模型,而验证数据集用于梯度提升模型。

使用 TF 决策森林进行超参数调优

TF-DF 支持自动超参数调优,只需最少的配置。在接下来的示例中,我们将训练和比较两个模型:一个使用默认超参数训练的模型,另一个使用超参数调优训练的模型。

设置

# Install TensorFlow Dececision Forests
pip install tensorflow_decision_forests -U -qq

安装Wurlitzer。Wurlitzer 是在 colabs 中显示详细训练日志(使用verbose=2)所必需的。

pip install wurlitzer -U -qq

导入必要的库。

import tensorflow_decision_forests as tfdf
import matplotlib.pyplot as plt
import pandas as pd
import tensorflow as tf
import numpy as np

隐藏的代码单元格限制了 colab 中的输出高度。

定义“set_cell_height”。

不使用自动超参数调优训练模型

我们将在UCI上提供的成人数据集上训练模型。让我们下载数据集。

# Download a copy of the adult dataset.
wget -q https://raw.githubusercontent.com/google/yggdrasil-decision-forests/main/yggdrasil_decision_forests/test_data/dataset/adult_train.csv -O /tmp/adult_train.csv
wget -q https://raw.githubusercontent.com/google/yggdrasil-decision-forests/main/yggdrasil_decision_forests/test_data/dataset/adult_test.csv -O /tmp/adult_test.csv

将数据集拆分为训练数据集和测试数据集。

# Load the dataset in memory
train_df = pd.read_csv("/tmp/adult_train.csv")
test_df = pd.read_csv("/tmp/adult_test.csv")

# , and convert it into a TensorFlow dataset.
train_ds = tfdf.keras.pd_dataframe_to_tf_dataset(train_df, label="income")
test_ds = tfdf.keras.pd_dataframe_to_tf_dataset(test_df, label="income")

首先,我们训练并评估使用默认超参数训练的梯度提升树模型的质量。

%%time
# Train a model with default hyper-parameters
model = tfdf.keras.GradientBoostedTreesModel()
model.fit(train_ds)
Warning: The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.
WARNING:absl:The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.
Use /tmpfs/tmp/tmplfxr97hp as temporary training directory
Reading training dataset...
[WARNING 24-04-20 11:39:03.3452 UTC gradient_boosted_trees.cc:1840] "goss_alpha" set but "sampling_method" not equal to "GOSS".
[WARNING 24-04-20 11:39:03.3452 UTC gradient_boosted_trees.cc:1851] "goss_beta" set but "sampling_method" not equal to "GOSS".
[WARNING 24-04-20 11:39:03.3452 UTC gradient_boosted_trees.cc:1865] "selective_gradient_boosting_ratio" set but "sampling_method" not equal to "SELGB".
Training dataset read in 0:00:03.930624. Found 22792 examples.
Training model...
Model trained in 0:00:03.045496
Compiling model...
[INFO 24-04-20 11:39:10.3189 UTC kernel.cc:1233] Loading model from path /tmpfs/tmp/tmplfxr97hp/model/ with prefix e44c5f7e5cae4178
[INFO 24-04-20 11:39:10.3400 UTC quick_scorer_extended.cc:911] The binary was compiled without AVX2 support, but your CPU supports it. Enable it for faster model inference.
[INFO 24-04-20 11:39:10.3411 UTC abstract_model.cc:1344] Engine "GradientBoostedTreesQuickScorerExtended" built
[INFO 24-04-20 11:39:10.3411 UTC kernel.cc:1061] Use fast generic engine
Model compiled.
CPU times: user 15 s, sys: 1.41 s, total: 16.4 s
Wall time: 11 s
<tf_keras.src.callbacks.History at 0x7f39bc6c6250>
# Evaluate the model
model.compile(["accuracy"])
test_accuracy = model.evaluate(test_ds, return_dict=True, verbose=0)["accuracy"]
print(f"Test accuracy without hyper-parameter tuning: {test_accuracy:.4f}")
Test accuracy without hyper-parameter tuning: 0.8744

模型的默认超参数可以使用learner_params函数获得。这些参数的定义可以在文档中找到。

print("Default hyper-parameters of the model:\n", model.learner_params)
Default hyper-parameters of the model:
 {'adapt_subsample_for_maximum_training_duration': False, 'allow_na_conditions': False, 'apply_link_function': True, 'categorical_algorithm': 'CART', 'categorical_set_split_greedy_sampling': 0.1, 'categorical_set_split_max_num_items': -1, 'categorical_set_split_min_item_frequency': 1, 'compute_permutation_variable_importance': False, 'dart_dropout': 0.01, 'early_stopping': 'LOSS_INCREASE', 'early_stopping_initial_iteration': 10, 'early_stopping_num_trees_look_ahead': 30, 'focal_loss_alpha': 0.5, 'focal_loss_gamma': 2.0, 'forest_extraction': 'MART', 'goss_alpha': 0.2, 'goss_beta': 0.1, 'growing_strategy': 'LOCAL', 'honest': False, 'honest_fixed_separation': False, 'honest_ratio_leaf_examples': 0.5, 'in_split_min_examples_check': True, 'keep_non_leaf_label_distribution': True, 'l1_regularization': 0.0, 'l2_categorical_regularization': 1.0, 'l2_regularization': 0.0, 'lambda_loss': 1.0, 'loss': 'DEFAULT', 'max_depth': 6, 'max_num_nodes': None, 'maximum_model_size_in_memory_in_bytes': -1.0, 'maximum_training_duration_seconds': -1.0, 'min_examples': 5, 'missing_value_policy': 'GLOBAL_IMPUTATION', 'num_candidate_attributes': -1, 'num_candidate_attributes_ratio': -1.0, 'num_trees': 300, 'pure_serving_model': False, 'random_seed': 123456, 'sampling_method': 'RANDOM', 'selective_gradient_boosting_ratio': 0.01, 'shrinkage': 0.1, 'sorting_strategy': 'PRESORT', 'sparse_oblique_max_num_projections': None, 'sparse_oblique_normalization': None, 'sparse_oblique_num_projections_exponent': None, 'sparse_oblique_projection_density_factor': None, 'sparse_oblique_weights': None, 'split_axis': 'AXIS_ALIGNED', 'subsample': 1.0, 'uplift_min_examples_in_treatment': 5, 'uplift_split_score': 'KULLBACK_LEIBLER', 'use_hessian_gain': False, 'validation_interval_in_trees': 1, 'validation_ratio': 0.1}

使用自动超参数调优和手动定义超参数训练模型

通过指定模型的tuner构造函数参数来启用超参数调优。调优器对象包含调优器的所有配置(搜索空间、优化器、试验和目标)。

# Configure the tuner.

# Create a Random Search tuner with 50 trials.
tuner = tfdf.tuner.RandomSearch(num_trials=50)

# Define the search space.
#
# Adding more parameters generaly improve the quality of the model, but make
# the tuning last longer.

tuner.choice("min_examples", [2, 5, 7, 10])
tuner.choice("categorical_algorithm", ["CART", "RANDOM"])

# Some hyper-parameters are only valid for specific values of other
# hyper-parameters. For example, the "max_depth" parameter is mostly useful when
# "growing_strategy=LOCAL" while "max_num_nodes" is better suited when
# "growing_strategy=BEST_FIRST_GLOBAL".

local_search_space = tuner.choice("growing_strategy", ["LOCAL"])
local_search_space.choice("max_depth", [3, 4, 5, 6, 8])

# merge=True indicates that the parameter (here "growing_strategy") is already
# defined, and that new values are added to it.
global_search_space = tuner.choice("growing_strategy", ["BEST_FIRST_GLOBAL"], merge=True)
global_search_space.choice("max_num_nodes", [16, 32, 64, 128, 256])

tuner.choice("use_hessian_gain", [True, False])
tuner.choice("shrinkage", [0.02, 0.05, 0.10, 0.15])
tuner.choice("num_candidate_attributes_ratio", [0.2, 0.5, 0.9, 1.0])

# Uncomment some (or all) of the following hyper-parameters to increase the
# quality of the search. The number of trial should be increased accordingly.

# tuner.choice("split_axis", ["AXIS_ALIGNED"])
# oblique_space = tuner.choice("split_axis", ["SPARSE_OBLIQUE"], merge=True)
# oblique_space.choice("sparse_oblique_normalization",
#                      ["NONE", "STANDARD_DEVIATION", "MIN_MAX"])
# oblique_space.choice("sparse_oblique_weights", ["BINARY", "CONTINUOUS"])
# oblique_space.choice("sparse_oblique_num_projections_exponent", [1.0, 1.5])
<tensorflow_decision_forests.component.tuner.tuner.SearchSpace at 0x7f399ddc9d60>
%%time
%set_cell_height 300

# Tune the model. Notice the `tuner=tuner`.
tuned_model = tfdf.keras.GradientBoostedTreesModel(tuner=tuner)
tuned_model.fit(train_ds, verbose=2)

# The `num_threads` model constructor argument (not specified in the example
# above) controls how many trials are run in parallel (one per thread). If
# `num_threads` is not specified (like in the example above), one thread is
# allocated for each available CPU core.
#
# If the training is interrupted (for example, by pressing on the "stop" button
# on the top-left of the colab cell), the best model so-far will be returned.

# In the training logs, you can see lines such as `[10/50] Score: -0.45 / -0.40
# HParams: ...`. This indicates that 10 of the 50 trials have been completed.
# And that the last trial returned a score of "-0.45" and that the best trial so
# far has a score of "-0.40". In this example, the model is optimized by
# logloss. Since scores are maximized and log loss should be minimized, the
# score is effectively minus the log loss.
<IPython.core.display.Javascript object>
Warning: The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.
WARNING:absl:The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.
Use /tmpfs/tmp/tmpi7_rh8z3 as temporary training directory
Reading training dataset...
Training tensor examples:
Features: {'age': <tf.Tensor 'data:0' shape=(None,) dtype=int64>, 'workclass': <tf.Tensor 'data_1:0' shape=(None,) dtype=string>, 'fnlwgt': <tf.Tensor 'data_2:0' shape=(None,) dtype=int64>, 'education': <tf.Tensor 'data_3:0' shape=(None,) dtype=string>, 'education_num': <tf.Tensor 'data_4:0' shape=(None,) dtype=int64>, 'marital_status': <tf.Tensor 'data_5:0' shape=(None,) dtype=string>, 'occupation': <tf.Tensor 'data_6:0' shape=(None,) dtype=string>, 'relationship': <tf.Tensor 'data_7:0' shape=(None,) dtype=string>, 'race': <tf.Tensor 'data_8:0' shape=(None,) dtype=string>, 'sex': <tf.Tensor 'data_9:0' shape=(None,) dtype=string>, 'capital_gain': <tf.Tensor 'data_10:0' shape=(None,) dtype=int64>, 'capital_loss': <tf.Tensor 'data_11:0' shape=(None,) dtype=int64>, 'hours_per_week': <tf.Tensor 'data_12:0' shape=(None,) dtype=int64>, 'native_country': <tf.Tensor 'data_13:0' shape=(None,) dtype=string>}
Label: Tensor("data_14:0", shape=(None,), dtype=int64)
Weights: None
Normalized tensor features:
 {'age': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast:0' shape=(None,) dtype=float32>), 'workclass': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_1:0' shape=(None,) dtype=string>), 'fnlwgt': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_1:0' shape=(None,) dtype=float32>), 'education': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_3:0' shape=(None,) dtype=string>), 'education_num': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_2:0' shape=(None,) dtype=float32>), 'marital_status': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_5:0' shape=(None,) dtype=string>), 'occupation': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_6:0' shape=(None,) dtype=string>), 'relationship': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_7:0' shape=(None,) dtype=string>), 'race': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_8:0' shape=(None,) dtype=string>), 'sex': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_9:0' shape=(None,) dtype=string>), 'capital_gain': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_3:0' shape=(None,) dtype=float32>), 'capital_loss': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_4:0' shape=(None,) dtype=float32>), 'hours_per_week': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_5:0' shape=(None,) dtype=float32>), 'native_country': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_13:0' shape=(None,) dtype=string>)}
[WARNING 24-04-20 11:39:18.1748 UTC gradient_boosted_trees.cc:1840] "goss_alpha" set but "sampling_method" not equal to "GOSS".
[WARNING 24-04-20 11:39:18.1748 UTC gradient_boosted_trees.cc:1851] "goss_beta" set but "sampling_method" not equal to "GOSS".
[WARNING 24-04-20 11:39:18.1748 UTC gradient_boosted_trees.cc:1865] "selective_gradient_boosting_ratio" set but "sampling_method" not equal to "SELGB".
Training dataset read in 0:00:00.403593. Found 22792 examples.
Training model...
Standard output detected as not visible to the user e.g. running in a notebook. Creating a training log redirection. If training gets stuck, try calling tfdf.keras.set_training_logs_redirection(False).
[INFO 24-04-20 11:39:18.5916 UTC kernel.cc:771] Start Yggdrasil model training
[INFO 24-04-20 11:39:18.5917 UTC kernel.cc:772] Collect training examples
[INFO 24-04-20 11:39:18.5917 UTC kernel.cc:785] Dataspec guide:
column_guides {
  column_name_pattern: "^__LABEL$"
  type: CATEGORICAL
  categorial {
    min_vocab_frequency: 0
    max_vocab_count: -1
  }
}
default_column_guide {
  categorial {
    max_vocab_count: 2000
  }
  discretized_numerical {
    maximum_num_bins: 255
  }
}
ignore_columns_without_guides: false
detect_numerical_as_discretized_numerical: false

[INFO 24-04-20 11:39:18.5918 UTC kernel.cc:391] Number of batches: 23
[INFO 24-04-20 11:39:18.5918 UTC kernel.cc:392] Number of examples: 22792
[INFO 24-04-20 11:39:18.5996 UTC data_spec_inference.cc:305] 1 item(s) have been pruned (i.e. they are considered out of dictionary) for the column native_country (40 item(s) left) because min_value_count=5 and max_number_of_unique_values=2000
[INFO 24-04-20 11:39:18.5996 UTC data_spec_inference.cc:305] 1 item(s) have been pruned (i.e. they are considered out of dictionary) for the column occupation (13 item(s) left) because min_value_count=5 and max_number_of_unique_values=2000
[INFO 24-04-20 11:39:18.5996 UTC data_spec_inference.cc:305] 1 item(s) have been pruned (i.e. they are considered out of dictionary) for the column workclass (7 item(s) left) because min_value_count=5 and max_number_of_unique_values=2000
[INFO 24-04-20 11:39:18.6063 UTC kernel.cc:792] Training dataset:
Number of records: 22792
Number of columns: 15

Number of columns by type:
    CATEGORICAL: 9 (60%)
    NUMERICAL: 6 (40%)

Columns:

CATEGORICAL: 9 (60%)
    0: "__LABEL" CATEGORICAL integerized vocab-size:3 no-ood-item
    4: "education" CATEGORICAL has-dict vocab-size:17 zero-ood-items most-frequent:"HS-grad" 7340 (32.2043%)
    8: "marital_status" CATEGORICAL has-dict vocab-size:8 zero-ood-items most-frequent:"Married-civ-spouse" 10431 (45.7661%)
    9: "native_country" CATEGORICAL num-nas:407 (1.78571%) has-dict vocab-size:41 num-oods:1 (0.00446728%) most-frequent:"United-States" 20436 (91.2933%)
    10: "occupation" CATEGORICAL num-nas:1260 (5.52826%) has-dict vocab-size:14 num-oods:4 (0.018577%) most-frequent:"Prof-specialty" 2870 (13.329%)
    11: "race" CATEGORICAL has-dict vocab-size:6 zero-ood-items most-frequent:"White" 19467 (85.4115%)
    12: "relationship" CATEGORICAL has-dict vocab-size:7 zero-ood-items most-frequent:"Husband" 9191 (40.3256%)
    13: "sex" CATEGORICAL has-dict vocab-size:3 zero-ood-items most-frequent:"Male" 15165 (66.5365%)
    14: "workclass" CATEGORICAL num-nas:1257 (5.51509%) has-dict vocab-size:8 num-oods:3 (0.0139308%) most-frequent:"Private" 15879 (73.7358%)

NUMERICAL: 6 (40%)
    1: "age" NUMERICAL mean:38.6153 min:17 max:90 sd:13.661
    2: "capital_gain" NUMERICAL mean:1081.9 min:0 max:99999 sd:7509.48
    3: "capital_loss" NUMERICAL mean:87.2806 min:0 max:4356 sd:403.01
    5: "education_num" NUMERICAL mean:10.0927 min:1 max:16 sd:2.56427
    6: "fnlwgt" NUMERICAL mean:189879 min:12285 max:1.4847e+06 sd:106423
    7: "hours_per_week" NUMERICAL mean:40.3955 min:1 max:99 sd:12.249

Terminology:
    nas: Number of non-available (i.e. missing) values.
    ood: Out of dictionary.
    manually-defined: Attribute whose type is manually defined by the user, i.e., the type was not automatically inferred.
    tokenized: The attribute value is obtained through tokenization.
    has-dict: The attribute is attached to a string dictionary e.g. a categorical attribute stored as a string.
    vocab-size: Number of unique values.

[INFO 24-04-20 11:39:18.6063 UTC kernel.cc:808] Configure learner
[WARNING 24-04-20 11:39:18.6066 UTC gradient_boosted_trees.cc:1840] "goss_alpha" set but "sampling_method" not equal to "GOSS".
[WARNING 24-04-20 11:39:18.6066 UTC gradient_boosted_trees.cc:1851] "goss_beta" set but "sampling_method" not equal to "GOSS".
[WARNING 24-04-20 11:39:18.6066 UTC gradient_boosted_trees.cc:1865] "selective_gradient_boosting_ratio" set but "sampling_method" not equal to "SELGB".
[INFO 24-04-20 11:39:18.6067 UTC kernel.cc:822] Training config:
learner: "HYPERPARAMETER_OPTIMIZER"
features: "^age$"
features: "^capital_gain$"
features: "^capital_loss$"
features: "^education$"
features: "^education_num$"
features: "^fnlwgt$"
features: "^hours_per_week$"
features: "^marital_status$"
features: "^native_country$"
features: "^occupation$"
features: "^race$"
features: "^relationship$"
features: "^sex$"
features: "^workclass$"
label: "^__LABEL$"
task: CLASSIFICATION
metadata {
  framework: "TF Keras"
}
[yggdrasil_decision_forests.model.hyperparameters_optimizer_v2.proto.hyperparameters_optimizer_config] {
  base_learner {
    learner: "GRADIENT_BOOSTED_TREES"
    features: "^age$"
    features: "^capital_gain$"
    features: "^capital_loss$"
    features: "^education$"
    features: "^education_num$"
    features: "^fnlwgt$"
    features: "^hours_per_week$"
    features: "^marital_status$"
    features: "^native_country$"
    features: "^occupation$"
    features: "^race$"
    features: "^relationship$"
    features: "^sex$"
    features: "^workclass$"
    label: "^__LABEL$"
    task: CLASSIFICATION
    random_seed: 123456
    pure_serving_model: false
    [yggdrasil_decision_forests.model.gradient_boosted_trees.proto.gradient_boosted_trees_config] {
      num_trees: 300
      decision_tree {
        max_depth: 6
        min_examples: 5
        in_split_min_examples_check: true
        keep_non_leaf_label_distribution: true
        num_candidate_attributes: -1
        missing_value_policy: GLOBAL_IMPUTATION
        allow_na_conditions: false
        categorical_set_greedy_forward {
          sampling: 0.1
          max_num_items: -1
          min_item_frequency: 1
        }
        growing_strategy_local {
        }
        categorical {
          cart {
          }
        }
        axis_aligned_split {
        }
        internal {
          sorting_strategy: PRESORTED
        }
        uplift {
          min_examples_in_treatment: 5
          split_score: KULLBACK_LEIBLER
        }
      }
      shrinkage: 0.1
      loss: DEFAULT
      validation_set_ratio: 0.1
      validation_interval_in_trees: 1
      early_stopping: VALIDATION_LOSS_INCREASE
      early_stopping_num_trees_look_ahead: 30
      l2_regularization: 0
      lambda_loss: 1
      mart {
      }
      adapt_subsample_for_maximum_training_duration: false
      l1_regularization: 0
      use_hessian_gain: false
      l2_regularization_categorical: 1
      stochastic_gradient_boosting {
        ratio: 1
      }
      apply_link_function: true
      compute_permutation_variable_importance: false
      binary_focal_loss_options {
        misprediction_exponent: 2
        positive_sample_coefficient: 0.5
      }
      early_stopping_initial_iteration: 10
    }
  }
  optimizer {
    optimizer_key: "RANDOM"
    [yggdrasil_decision_forests.model.hyperparameters_optimizer_v2.proto.random] {
      num_trials: 50
    }
  }
  search_space {
    fields {
      name: "min_examples"
      discrete_candidates {
        possible_values {
          integer: 2
        }
        possible_values {
          integer: 5
        }
        possible_values {
          integer: 7
        }
        possible_values {
          integer: 10
        }
      }
    }
    fields {
      name: "categorical_algorithm"
      discrete_candidates {
        possible_values {
          categorical: "CART"
        }
        possible_values {
          categorical: "RANDOM"
        }
      }
    }
    fields {
      name: "growing_strategy"
      discrete_candidates {
        possible_values {
          categorical: "LOCAL"
        }
        possible_values {
          categorical: "BEST_FIRST_GLOBAL"
        }
      }
      children {
        name: "max_depth"
        discrete_candidates {
          possible_values {
            integer: 3
          }
          possible_values {
            integer: 4
          }
          possible_values {
            integer: 5
          }
          possible_values {
            integer: 6
          }
          possible_values {
            integer: 8
          }
        }
        parent_discrete_values {
          possible_values {
            categorical: "LOCAL"
          }
        }
      }
      children {
        name: "max_num_nodes"
        discrete_candidates {
          possible_values {
            integer: 16
          }
          possible_values {
            integer: 32
          }
          possible_values {
            integer: 64
          }
          possible_values {
            integer: 128
          }
          possible_values {
            integer: 256
          }
        }
        parent_discrete_values {
          possible_values {
            categorical: "BEST_FIRST_GLOBAL"
          }
        }
      }
    }
    fields {
      name: "use_hessian_gain"
      discrete_candidates {
        possible_values {
          categorical: "true"
        }
        possible_values {
          categorical: "false"
        }
      }
    }
    fields {
      name: "shrinkage"
      discrete_candidates {
        possible_values {
          real: 0.02
        }
        possible_values {
          real: 0.05
        }
        possible_values {
          real: 0.1
        }
        possible_values {
          real: 0.15
        }
      }
    }
    fields {
      name: "num_candidate_attributes_ratio"
      discrete_candidates {
        possible_values {
          real: 0.2
        }
        possible_values {
          real: 0.5
        }
        possible_values {
          real: 0.9
        }
        possible_values {
          real: 1
        }
      }
    }
  }
  base_learner_deployment {
    num_threads: 1
  }
}

[INFO 24-04-20 11:39:18.6071 UTC kernel.cc:825] Deployment config:
cache_path: "/tmpfs/tmp/tmpi7_rh8z3/working_cache"
num_threads: 32
try_resume_training: true

[INFO 24-04-20 11:39:18.6073 UTC kernel.cc:887] Train model
[INFO 24-04-20 11:39:18.6075 UTC hyperparameters_optimizer.cc:214] Hyperparameter search space:
fields {
  name: "min_examples"
  discrete_candidates {
    possible_values {
      integer: 2
    }
    possible_values {
      integer: 5
    }
    possible_values {
      integer: 7
    }
    possible_values {
      integer: 10
    }
  }
}
fields {
  name: "categorical_algorithm"
  discrete_candidates {
    possible_values {
      categorical: "CART"
    }
    possible_values {
      categorical: "RANDOM"
    }
  }
}
fields {
  name: "growing_strategy"
  discrete_candidates {
    possible_values {
      categorical: "LOCAL"
    }
    possible_values {
      categorical: "BEST_FIRST_GLOBAL"
    }
  }
  children {
    name: "max_depth"
    discrete_candidates {
      possible_values {
        integer: 3
      }
      possible_values {
        integer: 4
      }
      possible_values {
        integer: 5
      }
      possible_values {
        integer: 6
      }
      possible_values {
        integer: 8
      }
    }
    parent_discrete_values {
      possible_values {
        categorical: "LOCAL"
      }
    }
  }
  children {
    name: "max_num_nodes"
    discrete_candidates {
      possible_values {
        integer: 16
      }
      possible_values {
        integer: 32
      }
      possible_values {
        integer: 64
      }
      possible_values {
        integer: 128
      }
      possible_values {
        integer: 256
      }
    }
    parent_discrete_values {
      possible_values {
        categorical: "BEST_FIRST_GLOBAL"
      }
    }
  }
}
fields {
  name: "use_hessian_gain"
  discrete_candidates {
    possible_values {
      categorical: "true"
    }
    possible_values {
      categorical: "false"
    }
  }
}
fields {
  name: "shrinkage"
  discrete_candidates {
    possible_values {
      real: 0.02
    }
    possible_values {
      real: 0.05
    }
    possible_values {
      real: 0.1
    }
    possible_values {
      real: 0.15
    }
  }
}
fields {
  name: "num_candidate_attributes_ratio"
  discrete_candidates {
    possible_values {
      real: 0.2
    }
    possible_values {
      real: 0.5
    }
    possible_values {
      real: 0.9
    }
    possible_values {
      real: 1
    }
  }
}

[INFO 24-04-20 11:39:18.6076 UTC hyperparameters_optimizer.cc:509] Start local tuner with 1 parallel trial(s), each with 32 thread(s)
[INFO 24-04-20 11:39:18.6081 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:39:18.6081 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:39:18.6145 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:39:18.6426 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.022126 train-accuracy:0.761895 valid-loss:1.077863 valid-accuracy:0.736609
[INFO 24-04-20 11:39:20.6354 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.581401
[INFO 24-04-20 11:39:20.6355 UTC gradient_boosted_trees.cc:270] Truncates the model to 145 tree(s) i.e. 145  iteration(s).
[INFO 24-04-20 11:39:20.6356 UTC gradient_boosted_trees.cc:333] Final model num-trees:145 valid-loss:0.581401 valid-accuracy:0.872510
[INFO 24-04-20 11:39:20.6376 UTC hyperparameters_optimizer.cc:593] [1/50] Score: -0.581401 / -0.581401 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 32 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 24-04-20 11:39:20.6377 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:39:20.6377 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:39:20.6426 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:39:20.7044 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.080203 train-accuracy:0.761895 valid-loss:1.138223 valid-accuracy:0.736609
[INFO 24-04-20 11:39:35.9300 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.503793 train-accuracy:0.889933 valid-loss:0.581187 valid-accuracy:0.870297
[INFO 24-04-20 11:39:35.9301 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 11:39:35.9301 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.581187 valid-accuracy:0.870297
[INFO 24-04-20 11:39:35.9358 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:39:35.9358 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:39:35.9373 UTC hyperparameters_optimizer.cc:593] [2/50] Score: -0.581187 / -0.581187 HParams: fields { name: "min_examples" value { integer: 10 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 128 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 11:39:35.9418 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:39:35.9803 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.015975 train-accuracy:0.761895 valid-loss:1.071430 valid-accuracy:0.736609
[INFO 24-04-20 11:39:37.3791 UTC gradient_boosted_trees.cc:1592]  num-trees:48 train-loss:0.545129 train-accuracy:0.880534 valid-loss:0.600357 valid-accuracy:0.864985
[INFO 24-04-20 11:39:42.4773 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.578782
[INFO 24-04-20 11:39:42.4773 UTC gradient_boosted_trees.cc:270] Truncates the model to 186 tree(s) i.e. 186  iteration(s).
[INFO 24-04-20 11:39:42.4776 UTC gradient_boosted_trees.cc:333] Final model num-trees:186 valid-loss:0.578782 valid-accuracy:0.873395
[INFO 24-04-20 11:39:42.4809 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:39:42.4810 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:39:42.4865 UTC hyperparameters_optimizer.cc:593] [3/50] Score: -0.578782 / -0.578782 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 6 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 11:39:42.4894 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:39:42.5198 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.054434 train-accuracy:0.761895 valid-loss:1.110703 valid-accuracy:0.736609
[INFO 24-04-20 11:39:48.0352 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.578653
[INFO 24-04-20 11:39:48.0353 UTC gradient_boosted_trees.cc:270] Truncates the model to 228 tree(s) i.e. 228  iteration(s).
[INFO 24-04-20 11:39:48.0356 UTC gradient_boosted_trees.cc:333] Final model num-trees:228 valid-loss:0.578653 valid-accuracy:0.870739
[INFO 24-04-20 11:39:48.0393 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:39:48.0394 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:39:48.0416 UTC hyperparameters_optimizer.cc:593] [4/50] Score: -0.578653 / -0.578653 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 32 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 24-04-20 11:39:48.0456 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:39:48.0890 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.080017 train-accuracy:0.761895 valid-loss:1.137988 valid-accuracy:0.736609
[INFO 24-04-20 11:39:58.1911 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.510029 train-accuracy:0.890566 valid-loss:0.588613 valid-accuracy:0.866755
[INFO 24-04-20 11:39:58.1911 UTC gradient_boosted_trees.cc:270] Truncates the model to 299 tree(s) i.e. 299  iteration(s).
[INFO 24-04-20 11:39:58.1912 UTC gradient_boosted_trees.cc:333] Final model num-trees:299 valid-loss:0.588549 valid-accuracy:0.865870
[INFO 24-04-20 11:39:58.1954 UTC hyperparameters_optimizer.cc:593] [5/50] Score: -0.588549 / -0.578653 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 32 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 11:39:58.1955 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:39:58.1955 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:39:58.2033 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:39:58.2233 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.080310 train-accuracy:0.761895 valid-loss:1.138544 valid-accuracy:0.736609
[INFO 24-04-20 11:40:02.2850 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.515617 train-accuracy:0.886914 valid-loss:0.591852 valid-accuracy:0.868083
[INFO 24-04-20 11:40:02.2850 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 11:40:02.2851 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.591852 valid-accuracy:0.868083
[INFO 24-04-20 11:40:02.2910 UTC hyperparameters_optimizer.cc:593] [6/50] Score: -0.591852 / -0.578653 HParams: fields { name: "min_examples" value { integer: 10 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 64 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 24-04-20 11:40:02.2911 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:40:02.2911 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:40:02.3004 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:40:02.3214 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:0.985785 train-accuracy:0.761895 valid-loss:1.041083 valid-accuracy:0.736609
[INFO 24-04-20 11:40:04.2097 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.569126
[INFO 24-04-20 11:40:04.2097 UTC gradient_boosted_trees.cc:270] Truncates the model to 161 tree(s) i.e. 161  iteration(s).
[INFO 24-04-20 11:40:04.2099 UTC gradient_boosted_trees.cc:333] Final model num-trees:161 valid-loss:0.569126 valid-accuracy:0.873838
[INFO 24-04-20 11:40:04.2114 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:40:04.2114 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:40:04.2146 UTC hyperparameters_optimizer.cc:593] [7/50] Score: -0.569126 / -0.569126 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.15 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 11:40:04.2187 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:40:04.2713 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.055966 train-accuracy:0.761895 valid-loss:1.113004 valid-accuracy:0.736609
[INFO 24-04-20 11:40:07.4215 UTC gradient_boosted_trees.cc:1592]  num-trees:76 train-loss:0.569166 train-accuracy:0.874690 valid-loss:0.608466 valid-accuracy:0.866755
[INFO 24-04-20 11:40:16.0366 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.469406 train-accuracy:0.896946 valid-loss:0.571488 valid-accuracy:0.872953
[INFO 24-04-20 11:40:16.0366 UTC gradient_boosted_trees.cc:270] Truncates the model to 283 tree(s) i.e. 283  iteration(s).
[INFO 24-04-20 11:40:16.0368 UTC gradient_boosted_trees.cc:333] Final model num-trees:283 valid-loss:0.571175 valid-accuracy:0.873838
[INFO 24-04-20 11:40:16.0399 UTC hyperparameters_optimizer.cc:593] [8/50] Score: -0.571175 / -0.569126 HParams: fields { name: "min_examples" value { integer: 10 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 6 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 11:40:16.0400 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:40:16.0400 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:40:16.0471 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:40:16.0993 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:0.978408 train-accuracy:0.761895 valid-loss:1.031947 valid-accuracy:0.736609
[INFO 24-04-20 11:40:20.2443 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.577748
[INFO 24-04-20 11:40:20.2444 UTC gradient_boosted_trees.cc:270] Truncates the model to 89 tree(s) i.e. 89  iteration(s).
[INFO 24-04-20 11:40:20.2446 UTC gradient_boosted_trees.cc:333] Final model num-trees:89 valid-loss:0.577748 valid-accuracy:0.871625
[INFO 24-04-20 11:40:20.2456 UTC hyperparameters_optimizer.cc:593] [9/50] Score: -0.577748 / -0.569126 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.15 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 11:40:20.2459 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:40:20.2459 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:40:20.2511 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:40:20.2919 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.080606 train-accuracy:0.761895 valid-loss:1.138615 valid-accuracy:0.736609
[INFO 24-04-20 11:40:29.4104 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.542830 train-accuracy:0.881654 valid-loss:0.593285 valid-accuracy:0.867198
[INFO 24-04-20 11:40:29.4104 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 11:40:29.4104 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.593285 valid-accuracy:0.867198
[INFO 24-04-20 11:40:29.4127 UTC hyperparameters_optimizer.cc:593] [10/50] Score: -0.593285 / -0.569126 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 11:40:29.4129 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:40:29.4129 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:40:29.4195 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:40:29.4346 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.007318 train-accuracy:0.761895 valid-loss:1.063819 valid-accuracy:0.736609
[INFO 24-04-20 11:40:30.8109 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.540563 train-accuracy:0.877271 valid-loss:0.581734 valid-accuracy:0.869854
[INFO 24-04-20 11:40:30.8109 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 11:40:30.8110 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.581734 valid-accuracy:0.869854
[INFO 24-04-20 11:40:30.8116 UTC hyperparameters_optimizer.cc:593] [11/50] Score: -0.581734 / -0.569126 HParams: fields { name: "min_examples" value { integer: 10 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 3 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.15 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 11:40:30.8117 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:40:30.8117 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:40:30.8169 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:40:30.8680 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.015861 train-accuracy:0.761895 valid-loss:1.071101 valid-accuracy:0.736609
[INFO 24-04-20 11:40:36.7109 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.577719
[INFO 24-04-20 11:40:36.7109 UTC gradient_boosted_trees.cc:270] Truncates the model to 133 tree(s) i.e. 133  iteration(s).
[INFO 24-04-20 11:40:36.7111 UTC gradient_boosted_trees.cc:333] Final model num-trees:133 valid-loss:0.577719 valid-accuracy:0.872510
[INFO 24-04-20 11:40:36.7123 UTC hyperparameters_optimizer.cc:593] [12/50] Score: -0.577719 / -0.569126 HParams: fields { name: "min_examples" value { integer: 10 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 24-04-20 11:40:36.7127 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:40:36.7127 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:40:36.7184 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:40:36.7434 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.021242 train-accuracy:0.761895 valid-loss:1.076859 valid-accuracy:0.736609
[INFO 24-04-20 11:40:37.4287 UTC gradient_boosted_trees.cc:1592]  num-trees:55 train-loss:0.569971 train-accuracy:0.870209 valid-loss:0.607976 valid-accuracy:0.863656
[INFO 24-04-20 11:40:39.2662 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.573576
[INFO 24-04-20 11:40:39.2662 UTC gradient_boosted_trees.cc:270] Truncates the model to 210 tree(s) i.e. 210  iteration(s).
[INFO 24-04-20 11:40:39.2663 UTC gradient_boosted_trees.cc:333] Final model num-trees:210 valid-loss:0.573576 valid-accuracy:0.872953
[INFO 24-04-20 11:40:39.2677 UTC hyperparameters_optimizer.cc:593] [13/50] Score: -0.573576 / -0.569126 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 24-04-20 11:40:39.2679 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:40:39.2679 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:40:39.2732 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:40:39.3143 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.052474 train-accuracy:0.761895 valid-loss:1.109417 valid-accuracy:0.736609
[INFO 24-04-20 11:40:44.6208 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.574613
[INFO 24-04-20 11:40:44.6208 UTC gradient_boosted_trees.cc:270] Truncates the model to 178 tree(s) i.e. 178  iteration(s).
[INFO 24-04-20 11:40:44.6212 UTC gradient_boosted_trees.cc:333] Final model num-trees:178 valid-loss:0.574613 valid-accuracy:0.872953
[INFO 24-04-20 11:40:44.6276 UTC hyperparameters_optimizer.cc:593] [14/50] Score: -0.574613 / -0.569126 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 24-04-20 11:40:44.6277 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:40:44.6277 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:40:44.6359 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:40:44.6565 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.013950 train-accuracy:0.761895 valid-loss:1.069965 valid-accuracy:0.736609
[INFO 24-04-20 11:40:46.8622 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.588103
[INFO 24-04-20 11:40:46.8622 UTC gradient_boosted_trees.cc:270] Truncates the model to 136 tree(s) i.e. 136  iteration(s).
[INFO 24-04-20 11:40:46.8626 UTC gradient_boosted_trees.cc:333] Final model num-trees:136 valid-loss:0.588103 valid-accuracy:0.869854
[INFO 24-04-20 11:40:46.8655 UTC hyperparameters_optimizer.cc:593] [15/50] Score: -0.588103 / -0.569126 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 64 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 24-04-20 11:40:46.8657 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:40:46.8657 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:40:46.8723 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:40:46.9163 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.012352 train-accuracy:0.761895 valid-loss:1.067086 valid-accuracy:0.736609
[INFO 24-04-20 11:40:52.6237 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.579442
[INFO 24-04-20 11:40:52.6238 UTC gradient_boosted_trees.cc:270] Truncates the model to 129 tree(s) i.e. 129  iteration(s).
[INFO 24-04-20 11:40:52.6242 UTC gradient_boosted_trees.cc:333] Final model num-trees:129 valid-loss:0.579442 valid-accuracy:0.870297
[INFO 24-04-20 11:40:52.6273 UTC hyperparameters_optimizer.cc:593] [16/50] Score: -0.579442 / -0.569126 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 128 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 11:40:52.6277 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:40:52.6277 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:40:52.6347 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:40:52.6989 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.054509 train-accuracy:0.761895 valid-loss:1.111318 valid-accuracy:0.736609
[INFO 24-04-20 11:41:03.2795 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.56991
[INFO 24-04-20 11:41:03.2796 UTC gradient_boosted_trees.cc:270] Truncates the model to 186 tree(s) i.e. 186  iteration(s).
[INFO 24-04-20 11:41:03.2800 UTC gradient_boosted_trees.cc:333] Final model num-trees:186 valid-loss:0.569910 valid-accuracy:0.873838
[INFO 24-04-20 11:41:03.2843 UTC hyperparameters_optimizer.cc:593] [17/50] Score: -0.56991 / -0.569126 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 64 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 11:41:03.2846 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:41:03.2846 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:41:03.2923 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:41:03.3323 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.055526 train-accuracy:0.761895 valid-loss:1.112339 valid-accuracy:0.736609
[INFO 24-04-20 11:41:07.4528 UTC gradient_boosted_trees.cc:1592]  num-trees:135 train-loss:0.534142 train-accuracy:0.883456 valid-loss:0.588371 valid-accuracy:0.870297
[INFO 24-04-20 11:41:11.0326 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.581089
[INFO 24-04-20 11:41:11.0327 UTC gradient_boosted_trees.cc:270] Truncates the model to 242 tree(s) i.e. 242  iteration(s).
[INFO 24-04-20 11:41:11.0328 UTC gradient_boosted_trees.cc:333] Final model num-trees:242 valid-loss:0.581089 valid-accuracy:0.867198
[INFO 24-04-20 11:41:11.0348 UTC hyperparameters_optimizer.cc:593] [18/50] Score: -0.581089 / -0.569126 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 24-04-20 11:41:11.0350 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:41:11.0350 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:41:11.0412 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:41:11.0924 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.080851 train-accuracy:0.761895 valid-loss:1.138916 valid-accuracy:0.736609
[INFO 24-04-20 11:41:23.4015 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.531686 train-accuracy:0.883261 valid-loss:0.586173 valid-accuracy:0.869854
[INFO 24-04-20 11:41:23.4016 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 11:41:23.4016 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.586173 valid-accuracy:0.869854
[INFO 24-04-20 11:41:23.4054 UTC hyperparameters_optimizer.cc:593] [19/50] Score: -0.586173 / -0.569126 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 6 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 11:41:23.4055 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:41:23.4056 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:41:23.4133 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:41:23.4519 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.080606 train-accuracy:0.761895 valid-loss:1.138615 valid-accuracy:0.736609
[INFO 24-04-20 11:41:32.4926 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.542858 train-accuracy:0.881800 valid-loss:0.595354 valid-accuracy:0.866755
[INFO 24-04-20 11:41:32.4926 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 11:41:32.4926 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.595354 valid-accuracy:0.866755
[INFO 24-04-20 11:41:32.4949 UTC hyperparameters_optimizer.cc:593] [20/50] Score: -0.595354 / -0.569126 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 24-04-20 11:41:32.4950 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:41:32.4950 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:41:32.5014 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:41:32.5134 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.033944 train-accuracy:0.761895 valid-loss:1.087890 valid-accuracy:0.736609
[INFO 24-04-20 11:41:33.3103 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.553261 train-accuracy:0.875566 valid-loss:0.590388 valid-accuracy:0.865870
[INFO 24-04-20 11:41:33.3103 UTC gradient_boosted_trees.cc:270] Truncates the model to 299 tree(s) i.e. 299  iteration(s).
[INFO 24-04-20 11:41:33.3103 UTC gradient_boosted_trees.cc:333] Final model num-trees:299 valid-loss:0.590370 valid-accuracy:0.866313
[INFO 24-04-20 11:41:33.3109 UTC hyperparameters_optimizer.cc:593] [21/50] Score: -0.59037 / -0.569126 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 3 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.15 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 24-04-20 11:41:33.3116 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:41:33.3116 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:41:33.3161 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:41:33.3420 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.056437 train-accuracy:0.761895 valid-loss:1.113420 valid-accuracy:0.736609
[INFO 24-04-20 11:41:37.4636 UTC gradient_boosted_trees.cc:1592]  num-trees:230 train-loss:0.463528 train-accuracy:0.899966 valid-loss:0.581779 valid-accuracy:0.873838
[INFO 24-04-20 11:41:37.8668 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.581186
[INFO 24-04-20 11:41:37.8668 UTC gradient_boosted_trees.cc:270] Truncates the model to 223 tree(s) i.e. 223  iteration(s).
[INFO 24-04-20 11:41:37.8672 UTC gradient_boosted_trees.cc:333] Final model num-trees:223 valid-loss:0.581186 valid-accuracy:0.874281
[INFO 24-04-20 11:41:37.8726 UTC hyperparameters_optimizer.cc:593] [22/50] Score: -0.581186 / -0.569126 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 256 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 24-04-20 11:41:37.8730 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:41:37.8730 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:41:37.8811 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:41:37.9288 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.080559 train-accuracy:0.761895 valid-loss:1.138519 valid-accuracy:0.736609
[INFO 24-04-20 11:41:48.4246 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.524125 train-accuracy:0.882287 valid-loss:0.586707 valid-accuracy:0.868969
[INFO 24-04-20 11:41:48.4246 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 11:41:48.4247 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.586707 valid-accuracy:0.868969
[INFO 24-04-20 11:41:48.4290 UTC hyperparameters_optimizer.cc:593] [23/50] Score: -0.586707 / -0.569126 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 32 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 11:41:48.4294 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:41:48.4294 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:41:48.4370 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:41:48.4561 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:0.992466 train-accuracy:0.761895 valid-loss:1.048658 valid-accuracy:0.736609
[INFO 24-04-20 11:41:50.3696 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.574698
[INFO 24-04-20 11:41:50.3696 UTC gradient_boosted_trees.cc:270] Truncates the model to 242 tree(s) i.e. 242  iteration(s).
[INFO 24-04-20 11:41:50.3697 UTC gradient_boosted_trees.cc:333] Final model num-trees:242 valid-loss:0.574698 valid-accuracy:0.871625
[INFO 24-04-20 11:41:50.3705 UTC hyperparameters_optimizer.cc:593] [24/50] Score: -0.574698 / -0.569126 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 4 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.15 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 24-04-20 11:41:50.3707 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:41:50.3707 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:41:50.3759 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:41:50.4045 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.056455 train-accuracy:0.761895 valid-loss:1.113410 valid-accuracy:0.736609
[INFO 24-04-20 11:41:55.0341 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.511416 train-accuracy:0.884381 valid-loss:0.572223 valid-accuracy:0.874723
[INFO 24-04-20 11:41:55.0342 UTC gradient_boosted_trees.cc:270] Truncates the model to 291 tree(s) i.e. 291  iteration(s).
[INFO 24-04-20 11:41:55.0342 UTC gradient_boosted_trees.cc:333] Final model num-trees:291 valid-loss:0.572029 valid-accuracy:0.874723
[INFO 24-04-20 11:41:55.0362 UTC hyperparameters_optimizer.cc:593] [25/50] Score: -0.572029 / -0.569126 HParams: fields { name: "min_examples" value { integer: 10 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 11:41:55.0364 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:41:55.0364 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:41:55.0420 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:41:55.0594 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.024983 train-accuracy:0.761895 valid-loss:1.080660 valid-accuracy:0.736609
[INFO 24-04-20 11:41:57.0973 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.488794 train-accuracy:0.890031 valid-loss:0.571949 valid-accuracy:0.873395
[INFO 24-04-20 11:41:57.0973 UTC gradient_boosted_trees.cc:270] Truncates the model to 284 tree(s) i.e. 284  iteration(s).
[INFO 24-04-20 11:41:57.0974 UTC gradient_boosted_trees.cc:333] Final model num-trees:284 valid-loss:0.571257 valid-accuracy:0.872953
[INFO 24-04-20 11:41:57.0990 UTC hyperparameters_optimizer.cc:593] [26/50] Score: -0.571257 / -0.569126 HParams: fields { name: "min_examples" value { integer: 10 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 24-04-20 11:41:57.0992 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:41:57.0992 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:41:57.1050 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:41:57.1279 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:0.992049 train-accuracy:0.761895 valid-loss:1.047210 valid-accuracy:0.736609
[INFO 24-04-20 11:41:59.3586 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.576255
[INFO 24-04-20 11:41:59.3587 UTC gradient_boosted_trees.cc:270] Truncates the model to 174 tree(s) i.e. 174  iteration(s).
[INFO 24-04-20 11:41:59.3587 UTC gradient_boosted_trees.cc:333] Final model num-trees:174 valid-loss:0.576255 valid-accuracy:0.868526
[INFO 24-04-20 11:41:59.3595 UTC hyperparameters_optimizer.cc:593] [27/50] Score: -0.576255 / -0.569126 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 4 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.15 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 24-04-20 11:41:59.3596 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:41:59.3596 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:41:59.3650 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:41:59.3863 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:0.974501 train-accuracy:0.761895 valid-loss:1.024211 valid-accuracy:0.736609
[INFO 24-04-20 11:42:00.2862 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.583674
[INFO 24-04-20 11:42:00.2863 UTC gradient_boosted_trees.cc:270] Truncates the model to 61 tree(s) i.e. 61  iteration(s).
[INFO 24-04-20 11:42:00.2867 UTC gradient_boosted_trees.cc:333] Final model num-trees:61 valid-loss:0.583674 valid-accuracy:0.866755
[INFO 24-04-20 11:42:00.2890 UTC hyperparameters_optimizer.cc:593] [28/50] Score: -0.583674 / -0.569126 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.15 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 24-04-20 11:42:00.2902 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:42:00.2902 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:42:00.2952 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:42:00.3287 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.080079 train-accuracy:0.761895 valid-loss:1.138475 valid-accuracy:0.736609
[INFO 24-04-20 11:42:06.9053 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.482299 train-accuracy:0.895096 valid-loss:0.586102 valid-accuracy:0.871182
[INFO 24-04-20 11:42:06.9053 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 11:42:06.9053 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.586102 valid-accuracy:0.871182
[INFO 24-04-20 11:42:06.9169 UTC hyperparameters_optimizer.cc:593] [29/50] Score: -0.586102 / -0.569126 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 24-04-20 11:42:06.9170 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:42:06.9170 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:42:06.9302 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:42:06.9450 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.015585 train-accuracy:0.761895 valid-loss:1.068358 valid-accuracy:0.736609
[INFO 24-04-20 11:42:07.4662 UTC gradient_boosted_trees.cc:1592]  num-trees:109 train-loss:0.577998 train-accuracy:0.867969 valid-loss:0.607920 valid-accuracy:0.864099
[INFO 24-04-20 11:42:08.3443 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.537262 train-accuracy:0.878780 valid-loss:0.585214 valid-accuracy:0.869854
[INFO 24-04-20 11:42:08.3444 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 11:42:08.3444 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.585214 valid-accuracy:0.869854
[INFO 24-04-20 11:42:08.3450 UTC hyperparameters_optimizer.cc:593] [30/50] Score: -0.585214 / -0.569126 HParams: fields { name: "min_examples" value { integer: 10 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 3 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.15 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 24-04-20 11:42:08.3454 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:42:08.3454 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:42:08.3505 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:42:08.3688 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.057450 train-accuracy:0.761895 valid-loss:1.114456 valid-accuracy:0.736609
[INFO 24-04-20 11:42:11.4761 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.499704 train-accuracy:0.890712 valid-loss:0.584889 valid-accuracy:0.869854
[INFO 24-04-20 11:42:11.4762 UTC gradient_boosted_trees.cc:270] Truncates the model to 298 tree(s) i.e. 298  iteration(s).
[INFO 24-04-20 11:42:11.4762 UTC gradient_boosted_trees.cc:333] Final model num-trees:298 valid-loss:0.584790 valid-accuracy:0.869411
[INFO 24-04-20 11:42:11.4784 UTC hyperparameters_optimizer.cc:593] [31/50] Score: -0.58479 / -0.569126 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 24-04-20 11:42:11.4785 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:42:11.4786 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:42:11.4854 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:42:11.5101 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.035081 train-accuracy:0.761895 valid-loss:1.091865 valid-accuracy:0.736609
[INFO 24-04-20 11:42:16.0150 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.552464 train-accuracy:0.876443 valid-loss:0.595066 valid-accuracy:0.869854
[INFO 24-04-20 11:42:16.0150 UTC gradient_boosted_trees.cc:270] Truncates the model to 298 tree(s) i.e. 298  iteration(s).
[INFO 24-04-20 11:42:16.0150 UTC gradient_boosted_trees.cc:333] Final model num-trees:298 valid-loss:0.595026 valid-accuracy:0.869854
[INFO 24-04-20 11:42:16.0157 UTC hyperparameters_optimizer.cc:593] [32/50] Score: -0.595026 / -0.569126 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 3 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 24-04-20 11:42:16.0158 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:42:16.0159 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:42:16.0215 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:42:16.0441 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.080487 train-accuracy:0.761895 valid-loss:1.138629 valid-accuracy:0.736609
[INFO 24-04-20 11:42:20.0808 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.523350 train-accuracy:0.883992 valid-loss:0.583351 valid-accuracy:0.868526
[INFO 24-04-20 11:42:20.0808 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 11:42:20.0808 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.583351 valid-accuracy:0.868526
[INFO 24-04-20 11:42:20.0866 UTC hyperparameters_optimizer.cc:593] [33/50] Score: -0.583351 / -0.569126 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 128 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 24-04-20 11:42:20.0869 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:42:20.0870 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:42:20.0952 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:42:20.1345 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.010715 train-accuracy:0.761895 valid-loss:1.065719 valid-accuracy:0.736609
[INFO 24-04-20 11:42:22.9603 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.574468
[INFO 24-04-20 11:42:22.9603 UTC gradient_boosted_trees.cc:270] Truncates the model to 83 tree(s) i.e. 83  iteration(s).
[INFO 24-04-20 11:42:22.9609 UTC gradient_boosted_trees.cc:333] Final model num-trees:83 valid-loss:0.574468 valid-accuracy:0.872510
[INFO 24-04-20 11:42:22.9648 UTC hyperparameters_optimizer.cc:593] [34/50] Score: -0.574468 / -0.569126 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 24-04-20 11:42:22.9649 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:42:22.9649 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:42:22.9714 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:42:22.9886 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.057450 train-accuracy:0.761895 valid-loss:1.114456 valid-accuracy:0.736609
[INFO 24-04-20 11:42:26.1424 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.498302 train-accuracy:0.892222 valid-loss:0.585352 valid-accuracy:0.870297
[INFO 24-04-20 11:42:26.1424 UTC gradient_boosted_trees.cc:270] Truncates the model to 296 tree(s) i.e. 296  iteration(s).
[INFO 24-04-20 11:42:26.1425 UTC gradient_boosted_trees.cc:333] Final model num-trees:296 valid-loss:0.585279 valid-accuracy:0.870297
[INFO 24-04-20 11:42:26.1446 UTC hyperparameters_optimizer.cc:593] [35/50] Score: -0.585279 / -0.569126 HParams: fields { name: "min_examples" value { integer: 10 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 24-04-20 11:42:26.1447 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:42:26.1448 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:42:26.1510 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:42:26.1722 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.016525 train-accuracy:0.761895 valid-loss:1.069784 valid-accuracy:0.736609
[INFO 24-04-20 11:42:27.6359 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.57933
[INFO 24-04-20 11:42:27.6359 UTC gradient_boosted_trees.cc:270] Truncates the model to 123 tree(s) i.e. 123  iteration(s).
[INFO 24-04-20 11:42:27.6364 UTC gradient_boosted_trees.cc:333] Final model num-trees:123 valid-loss:0.579330 valid-accuracy:0.867641
[INFO 24-04-20 11:42:27.6411 UTC hyperparameters_optimizer.cc:593] [36/50] Score: -0.57933 / -0.569126 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 24-04-20 11:42:27.6412 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:42:27.6412 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:42:27.6484 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:42:27.6608 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.053989 train-accuracy:0.761895 valid-loss:1.109535 valid-accuracy:0.736609
[INFO 24-04-20 11:42:28.4511 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.567582 train-accuracy:0.871475 valid-loss:0.596684 valid-accuracy:0.865870
[INFO 24-04-20 11:42:28.4512 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 11:42:28.4512 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.596684 valid-accuracy:0.865870
[INFO 24-04-20 11:42:28.4518 UTC hyperparameters_optimizer.cc:593] [37/50] Score: -0.596684 / -0.569126 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 3 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 24-04-20 11:42:28.4519 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:42:28.4519 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:42:28.4572 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:42:28.4917 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:0.981052 train-accuracy:0.761895 valid-loss:1.035441 valid-accuracy:0.736609
[INFO 24-04-20 11:42:30.5459 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.586668
[INFO 24-04-20 11:42:30.5460 UTC gradient_boosted_trees.cc:270] Truncates the model to 61 tree(s) i.e. 61  iteration(s).
[INFO 24-04-20 11:42:30.5462 UTC gradient_boosted_trees.cc:333] Final model num-trees:61 valid-loss:0.586668 valid-accuracy:0.868969
[INFO 24-04-20 11:42:30.5471 UTC hyperparameters_optimizer.cc:593] [38/50] Score: -0.586668 / -0.569126 HParams: fields { name: "min_examples" value { integer: 10 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.15 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 24-04-20 11:42:30.5473 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:42:30.5474 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:42:30.5527 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:42:30.5748 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.080688 train-accuracy:0.761895 valid-loss:1.138783 valid-accuracy:0.736609
[INFO 24-04-20 11:42:34.3731 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.523219 train-accuracy:0.886135 valid-loss:0.593385 valid-accuracy:0.868526
[INFO 24-04-20 11:42:34.3731 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 11:42:34.3731 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.593385 valid-accuracy:0.868526
[INFO 24-04-20 11:42:34.3776 UTC hyperparameters_optimizer.cc:593] [39/50] Score: -0.593385 / -0.569126 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 32 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 24-04-20 11:42:34.3778 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:42:34.3778 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:42:34.3860 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:42:34.4134 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.082622 train-accuracy:0.761895 valid-loss:1.140940 valid-accuracy:0.736609
[INFO 24-04-20 11:42:37.4800 UTC gradient_boosted_trees.cc:1592]  num-trees:165 train-loss:0.632445 train-accuracy:0.861881 valid-loss:0.662238 valid-accuracy:0.850819
[INFO 24-04-20 11:42:39.9779 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.588445 train-accuracy:0.867433 valid-loss:0.620650 valid-accuracy:0.862328
[INFO 24-04-20 11:42:39.9780 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 11:42:39.9780 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.620650 valid-accuracy:0.862328
[INFO 24-04-20 11:42:39.9789 UTC hyperparameters_optimizer.cc:593] [40/50] Score: -0.62065 / -0.569126 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 4 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 24-04-20 11:42:39.9793 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:42:39.9794 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:42:39.9851 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:42:40.0101 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:0.991671 train-accuracy:0.761895 valid-loss:1.045193 valid-accuracy:0.736609
[INFO 24-04-20 11:42:41.6192 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.573957
[INFO 24-04-20 11:42:41.6193 UTC gradient_boosted_trees.cc:270] Truncates the model to 126 tree(s) i.e. 126  iteration(s).
[INFO 24-04-20 11:42:41.6194 UTC gradient_boosted_trees.cc:333] Final model num-trees:126 valid-loss:0.573957 valid-accuracy:0.870297
[INFO 24-04-20 11:42:41.6202 UTC hyperparameters_optimizer.cc:593] [41/50] Score: -0.573957 / -0.569126 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.15 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 24-04-20 11:42:41.6204 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:42:41.6204 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:42:41.6253 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:42:41.6554 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.015325 train-accuracy:0.761895 valid-loss:1.070753 valid-accuracy:0.736609
[INFO 24-04-20 11:42:44.7167 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.571936
[INFO 24-04-20 11:42:44.7168 UTC gradient_boosted_trees.cc:270] Truncates the model to 159 tree(s) i.e. 159  iteration(s).
[INFO 24-04-20 11:42:44.7170 UTC gradient_boosted_trees.cc:333] Final model num-trees:159 valid-loss:0.571936 valid-accuracy:0.872067
[INFO 24-04-20 11:42:44.7193 UTC hyperparameters_optimizer.cc:593] [42/50] Score: -0.571936 / -0.569126 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 32 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 24-04-20 11:42:44.7194 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:42:44.7194 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:42:44.7253 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:42:44.7628 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.056130 train-accuracy:0.761895 valid-loss:1.113107 valid-accuracy:0.736609
[INFO 24-04-20 11:42:50.5114 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.573479
[INFO 24-04-20 11:42:50.5114 UTC gradient_boosted_trees.cc:270] Truncates the model to 215 tree(s) i.e. 215  iteration(s).
[INFO 24-04-20 11:42:50.5116 UTC gradient_boosted_trees.cc:333] Final model num-trees:215 valid-loss:0.573479 valid-accuracy:0.872953
[INFO 24-04-20 11:42:50.5143 UTC hyperparameters_optimizer.cc:593] [43/50] Score: -0.573479 / -0.569126 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 6 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 11:42:50.5147 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:42:50.5148 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:42:50.5211 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:42:50.5507 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.081456 train-accuracy:0.761895 valid-loss:1.139474 valid-accuracy:0.736609
[INFO 24-04-20 11:42:54.6583 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.522091 train-accuracy:0.882823 valid-loss:0.589971 valid-accuracy:0.868083
[INFO 24-04-20 11:42:54.6583 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 11:42:54.6583 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.589971 valid-accuracy:0.868083
[INFO 24-04-20 11:42:54.6645 UTC hyperparameters_optimizer.cc:593] [44/50] Score: -0.589971 / -0.569126 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 128 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 24-04-20 11:42:54.6646 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:42:54.6646 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:42:54.6729 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:42:54.6997 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.010652 train-accuracy:0.761895 valid-loss:1.064824 valid-accuracy:0.736609
[INFO 24-04-20 11:42:56.8398 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.571687
[INFO 24-04-20 11:42:56.8398 UTC gradient_boosted_trees.cc:270] Truncates the model to 119 tree(s) i.e. 119  iteration(s).
[INFO 24-04-20 11:42:56.8402 UTC gradient_boosted_trees.cc:333] Final model num-trees:119 valid-loss:0.571687 valid-accuracy:0.868526
[INFO 24-04-20 11:42:56.8441 UTC hyperparameters_optimizer.cc:593] [45/50] Score: -0.571687 / -0.569126 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 24-04-20 11:42:56.8442 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:42:56.8442 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:42:56.8509 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:42:56.8811 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.013729 train-accuracy:0.761895 valid-loss:1.069266 valid-accuracy:0.736609
[INFO 24-04-20 11:42:59.4262 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.568272
[INFO 24-04-20 11:42:59.4262 UTC gradient_boosted_trees.cc:270] Truncates the model to 117 tree(s) i.e. 117  iteration(s).
[INFO 24-04-20 11:42:59.4265 UTC gradient_boosted_trees.cc:333] Final model num-trees:117 valid-loss:0.568272 valid-accuracy:0.873395
[INFO 24-04-20 11:42:59.4297 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:42:59.4298 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:42:59.4303 UTC hyperparameters_optimizer.cc:593] [46/50] Score: -0.568272 / -0.568272 HParams: fields { name: "min_examples" value { integer: 5 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 256 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 24-04-20 11:42:59.4350 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:42:59.4604 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.009908 train-accuracy:0.761895 valid-loss:1.065147 valid-accuracy:0.736609
[INFO 24-04-20 11:43:01.0106 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.588365
[INFO 24-04-20 11:43:01.0106 UTC gradient_boosted_trees.cc:270] Truncates the model to 72 tree(s) i.e. 72  iteration(s).
[INFO 24-04-20 11:43:01.0114 UTC gradient_boosted_trees.cc:333] Final model num-trees:72 valid-loss:0.588365 valid-accuracy:0.867641
[INFO 24-04-20 11:43:01.0151 UTC hyperparameters_optimizer.cc:593] [47/50] Score: -0.588365 / -0.568272 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 24-04-20 11:43:01.0152 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:43:01.0153 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:43:01.0223 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:43:01.0647 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.079317 train-accuracy:0.761895 valid-loss:1.137114 valid-accuracy:0.736609
[INFO 24-04-20 11:43:07.4826 UTC gradient_boosted_trees.cc:1592]  num-trees:212 train-loss:0.511944 train-accuracy:0.884040 valid-loss:0.592119 valid-accuracy:0.866755
[INFO 24-04-20 11:43:09.7157 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.478934 train-accuracy:0.892709 valid-loss:0.580173 valid-accuracy:0.871625
[INFO 24-04-20 11:43:09.7157 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 11:43:09.7158 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.580173 valid-accuracy:0.871625
[INFO 24-04-20 11:43:09.7261 UTC hyperparameters_optimizer.cc:593] [48/50] Score: -0.580173 / -0.568272 HParams: fields { name: "min_examples" value { integer: 7 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 24-04-20 11:43:09.7265 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:43:09.7265 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:43:09.7367 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:43:09.7890 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.055888 train-accuracy:0.761895 valid-loss:1.113012 valid-accuracy:0.736609
[INFO 24-04-20 11:43:21.3043 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.572366
[INFO 24-04-20 11:43:21.3044 UTC gradient_boosted_trees.cc:270] Truncates the model to 264 tree(s) i.e. 264  iteration(s).
[INFO 24-04-20 11:43:21.3047 UTC gradient_boosted_trees.cc:333] Final model num-trees:264 valid-loss:0.572366 valid-accuracy:0.873838
[INFO 24-04-20 11:43:21.3083 UTC hyperparameters_optimizer.cc:593] [49/50] Score: -0.572366 / -0.568272 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 6 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 11:43:21.3084 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:43:21.3084 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:43:21.3158 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:43:21.3638 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.012875 train-accuracy:0.761895 valid-loss:1.067941 valid-accuracy:0.736609
[INFO 24-04-20 11:43:25.5823 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.568887
[INFO 24-04-20 11:43:25.5823 UTC gradient_boosted_trees.cc:270] Truncates the model to 105 tree(s) i.e. 105  iteration(s).
[INFO 24-04-20 11:43:25.5827 UTC gradient_boosted_trees.cc:333] Final model num-trees:105 valid-loss:0.568887 valid-accuracy:0.875166
[INFO 24-04-20 11:43:25.5852 UTC hyperparameters_optimizer.cc:593] [50/50] Score: -0.568887 / -0.568272 HParams: fields { name: "min_examples" value { integer: 2 } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 64 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 24-04-20 11:43:25.5885 UTC hyperparameters_optimizer.cc:224] Best hyperparameters:
fields {
  name: "min_examples"
  value {
    integer: 5
  }
}
fields {
  name: "categorical_algorithm"
  value {
    categorical: "CART"
  }
}
fields {
  name: "growing_strategy"
  value {
    categorical: "BEST_FIRST_GLOBAL"
  }
}
fields {
  name: "max_num_nodes"
  value {
    integer: 256
  }
}
fields {
  name: "use_hessian_gain"
  value {
    categorical: "true"
  }
}
fields {
  name: "shrinkage"
  value {
    real: 0.1
  }
}
fields {
  name: "num_candidate_attributes_ratio"
  value {
    real: 0.9
  }
}

[INFO 24-04-20 11:43:25.5888 UTC kernel.cc:919] Export model in log directory: /tmpfs/tmp/tmpi7_rh8z3 with prefix 46d5c4b975a742e3
[INFO 24-04-20 11:43:25.5957 UTC kernel.cc:937] Save model in resources
[INFO 24-04-20 11:43:25.5985 UTC abstract_model.cc:881] Model self evaluation:
Task: CLASSIFICATION
Label: __LABEL
Loss (BINOMIAL_LOG_LIKELIHOOD): 0.568272

Accuracy: 0.873395  CI95[W][0 1]
ErrorRate: : 0.126605


Confusion Table:
truth\prediction
      1    2
1  1570   94
2   192  403
Total: 2259


[INFO 24-04-20 11:43:25.6157 UTC kernel.cc:1233] Loading model from path /tmpfs/tmp/tmpi7_rh8z3/model/ with prefix 46d5c4b975a742e3
[INFO 24-04-20 11:43:25.6456 UTC quick_scorer_extended.cc:911] The binary was compiled without AVX2 support, but your CPU supports it. Enable it for faster model inference.
[INFO 24-04-20 11:43:25.6471 UTC abstract_model.cc:1344] Engine "GradientBoostedTreesQuickScorerExtended" built
[INFO 24-04-20 11:43:25.6471 UTC kernel.cc:1061] Use fast generic engine
Model trained in 0:04:07.062880
Compiling model...
Model compiled.
CPU times: user 4min 9s, sys: 493 ms, total: 4min 9s
Wall time: 4min 7s
<tf_keras.src.callbacks.History at 0x7f39af26a040>
# Evaluate the model
tuned_model.compile(["accuracy"])
tuned_test_accuracy = tuned_model.evaluate(test_ds, return_dict=True, verbose=0)["accuracy"]
print(f"Test accuracy with the TF-DF hyper-parameter tuner: {tuned_test_accuracy:.4f}")
Test accuracy with the TF-DF hyper-parameter tuner: 0.8722

试验的超参数和目标得分可以在模型检查器中找到。score值始终被最大化。在本例中,得分是验证数据集(自动选择)上的负对数损失。

# Display the tuning logs.
tuning_logs = tuned_model.make_inspector().tuning_logs()
tuning_logs.head()

具有best=True的单行是最终模型中使用的行。

# Best hyper-parameters.
tuning_logs[tuning_logs.best].iloc[0]
score                                     -0.568272
evaluation_time                          220.821355
best                                           True
min_examples                                      5
categorical_algorithm                          CART
growing_strategy                  BEST_FIRST_GLOBAL
max_num_nodes                                 256.0
use_hessian_gain                               true
shrinkage                                       0.1
num_candidate_attributes_ratio                  0.9
max_depth                                       NaN
Name: 45, dtype: object

接下来,我们绘制调优过程中最佳得分的评估结果。

plt.figure(figsize=(10, 5))
plt.plot(tuning_logs["score"], label="current trial")
plt.plot(tuning_logs["score"].cummax(), label="best trial")
plt.xlabel("Tuning step")
plt.ylabel("Tuning score")
plt.legend()
plt.show()

png

与之前一样,通过指定模型的tuner构造函数参数来启用超参数调优。将use_predefined_hps=True设置为自动配置超参数的搜索空间。

%%time
%set_cell_height 300

# Create a Random Search tuner with 50 trials and automatic hp configuration.
tuner = tfdf.tuner.RandomSearch(num_trials=50, use_predefined_hps=True)

# Define and train the model.
tuned_model = tfdf.keras.GradientBoostedTreesModel(tuner=tuner)
tuned_model.fit(train_ds, verbose=2)
<IPython.core.display.Javascript object>
Warning: The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.
WARNING:absl:The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.
Use /tmpfs/tmp/tmpl269t4qx as temporary training directory
Reading training dataset...
Training tensor examples:
Features: {'age': <tf.Tensor 'data:0' shape=(None,) dtype=int64>, 'workclass': <tf.Tensor 'data_1:0' shape=(None,) dtype=string>, 'fnlwgt': <tf.Tensor 'data_2:0' shape=(None,) dtype=int64>, 'education': <tf.Tensor 'data_3:0' shape=(None,) dtype=string>, 'education_num': <tf.Tensor 'data_4:0' shape=(None,) dtype=int64>, 'marital_status': <tf.Tensor 'data_5:0' shape=(None,) dtype=string>, 'occupation': <tf.Tensor 'data_6:0' shape=(None,) dtype=string>, 'relationship': <tf.Tensor 'data_7:0' shape=(None,) dtype=string>, 'race': <tf.Tensor 'data_8:0' shape=(None,) dtype=string>, 'sex': <tf.Tensor 'data_9:0' shape=(None,) dtype=string>, 'capital_gain': <tf.Tensor 'data_10:0' shape=(None,) dtype=int64>, 'capital_loss': <tf.Tensor 'data_11:0' shape=(None,) dtype=int64>, 'hours_per_week': <tf.Tensor 'data_12:0' shape=(None,) dtype=int64>, 'native_country': <tf.Tensor 'data_13:0' shape=(None,) dtype=string>}
Label: Tensor("data_14:0", shape=(None,), dtype=int64)
Weights: None
Normalized tensor features:
 {'age': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast:0' shape=(None,) dtype=float32>), 'workclass': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_1:0' shape=(None,) dtype=string>), 'fnlwgt': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_1:0' shape=(None,) dtype=float32>), 'education': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_3:0' shape=(None,) dtype=string>), 'education_num': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_2:0' shape=(None,) dtype=float32>), 'marital_status': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_5:0' shape=(None,) dtype=string>), 'occupation': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_6:0' shape=(None,) dtype=string>), 'relationship': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_7:0' shape=(None,) dtype=string>), 'race': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_8:0' shape=(None,) dtype=string>), 'sex': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_9:0' shape=(None,) dtype=string>), 'capital_gain': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_3:0' shape=(None,) dtype=float32>), 'capital_loss': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_4:0' shape=(None,) dtype=float32>), 'hours_per_week': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_5:0' shape=(None,) dtype=float32>), 'native_country': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_13:0' shape=(None,) dtype=string>)}
[WARNING 24-04-20 11:43:26.4721 UTC gradient_boosted_trees.cc:1840] "goss_alpha" set but "sampling_method" not equal to "GOSS".
[WARNING 24-04-20 11:43:26.4721 UTC gradient_boosted_trees.cc:1851] "goss_beta" set but "sampling_method" not equal to "GOSS".
[WARNING 24-04-20 11:43:26.4721 UTC gradient_boosted_trees.cc:1865] "selective_gradient_boosting_ratio" set but "sampling_method" not equal to "SELGB".
Training dataset read in 0:00:00.379650. Found 22792 examples.
Training model...
[INFO 24-04-20 11:43:26.8649 UTC kernel.cc:771] Start Yggdrasil model training
[INFO 24-04-20 11:43:26.8649 UTC kernel.cc:772] Collect training examples
[INFO 24-04-20 11:43:26.8649 UTC kernel.cc:785] Dataspec guide:
column_guides {
  column_name_pattern: "^__LABEL$"
  type: CATEGORICAL
  categorial {
    min_vocab_frequency: 0
    max_vocab_count: -1
  }
}
default_column_guide {
  categorial {
    max_vocab_count: 2000
  }
  discretized_numerical {
    maximum_num_bins: 255
  }
}
ignore_columns_without_guides: false
detect_numerical_as_discretized_numerical: false

[INFO 24-04-20 11:43:26.8650 UTC kernel.cc:391] Number of batches: 23
[INFO 24-04-20 11:43:26.8650 UTC kernel.cc:392] Number of examples: 22792
[INFO 24-04-20 11:43:26.8734 UTC data_spec_inference.cc:305] 1 item(s) have been pruned (i.e. they are considered out of dictionary) for the column native_country (40 item(s) left) because min_value_count=5 and max_number_of_unique_values=2000
[INFO 24-04-20 11:43:26.8735 UTC data_spec_inference.cc:305] 1 item(s) have been pruned (i.e. they are considered out of dictionary) for the column occupation (13 item(s) left) because min_value_count=5 and max_number_of_unique_values=2000
[INFO 24-04-20 11:43:26.8735 UTC data_spec_inference.cc:305] 1 item(s) have been pruned (i.e. they are considered out of dictionary) for the column workclass (7 item(s) left) because min_value_count=5 and max_number_of_unique_values=2000
[INFO 24-04-20 11:43:26.8801 UTC kernel.cc:792] Training dataset:
Number of records: 22792
Number of columns: 15

Number of columns by type:
    CATEGORICAL: 9 (60%)
    NUMERICAL: 6 (40%)

Columns:

CATEGORICAL: 9 (60%)
    0: "__LABEL" CATEGORICAL integerized vocab-size:3 no-ood-item
    4: "education" CATEGORICAL has-dict vocab-size:17 zero-ood-items most-frequent:"HS-grad" 7340 (32.2043%)
    8: "marital_status" CATEGORICAL has-dict vocab-size:8 zero-ood-items most-frequent:"Married-civ-spouse" 10431 (45.7661%)
    9: "native_country" CATEGORICAL num-nas:407 (1.78571%) has-dict vocab-size:41 num-oods:1 (0.00446728%) most-frequent:"United-States" 20436 (91.2933%)
    10: "occupation" CATEGORICAL num-nas:1260 (5.52826%) has-dict vocab-size:14 num-oods:4 (0.018577%) most-frequent:"Prof-specialty" 2870 (13.329%)
    11: "race" CATEGORICAL has-dict vocab-size:6 zero-ood-items most-frequent:"White" 19467 (85.4115%)
    12: "relationship" CATEGORICAL has-dict vocab-size:7 zero-ood-items most-frequent:"Husband" 9191 (40.3256%)
    13: "sex" CATEGORICAL has-dict vocab-size:3 zero-ood-items most-frequent:"Male" 15165 (66.5365%)
    14: "workclass" CATEGORICAL num-nas:1257 (5.51509%) has-dict vocab-size:8 num-oods:3 (0.0139308%) most-frequent:"Private" 15879 (73.7358%)

NUMERICAL: 6 (40%)
    1: "age" NUMERICAL mean:38.6153 min:17 max:90 sd:13.661
    2: "capital_gain" NUMERICAL mean:1081.9 min:0 max:99999 sd:7509.48
    3: "capital_loss" NUMERICAL mean:87.2806 min:0 max:4356 sd:403.01
    5: "education_num" NUMERICAL mean:10.0927 min:1 max:16 sd:2.56427
    6: "fnlwgt" NUMERICAL mean:189879 min:12285 max:1.4847e+06 sd:106423
    7: "hours_per_week" NUMERICAL mean:40.3955 min:1 max:99 sd:12.249

Terminology:
    nas: Number of non-available (i.e. missing) values.
    ood: Out of dictionary.
    manually-defined: Attribute whose type is manually defined by the user, i.e., the type was not automatically inferred.
    tokenized: The attribute value is obtained through tokenization.
    has-dict: The attribute is attached to a string dictionary e.g. a categorical attribute stored as a string.
    vocab-size: Number of unique values.

[INFO 24-04-20 11:43:26.8801 UTC kernel.cc:808] Configure learner
[WARNING 24-04-20 11:43:26.8804 UTC gradient_boosted_trees.cc:1840] "goss_alpha" set but "sampling_method" not equal to "GOSS".
[WARNING 24-04-20 11:43:26.8805 UTC gradient_boosted_trees.cc:1851] "goss_beta" set but "sampling_method" not equal to "GOSS".
[WARNING 24-04-20 11:43:26.8805 UTC gradient_boosted_trees.cc:1865] "selective_gradient_boosting_ratio" set but "sampling_method" not equal to "SELGB".
[INFO 24-04-20 11:43:26.8806 UTC kernel.cc:822] Training config:
learner: "HYPERPARAMETER_OPTIMIZER"
features: "^age$"
features: "^capital_gain$"
features: "^capital_loss$"
features: "^education$"
features: "^education_num$"
features: "^fnlwgt$"
features: "^hours_per_week$"
features: "^marital_status$"
features: "^native_country$"
features: "^occupation$"
features: "^race$"
features: "^relationship$"
features: "^sex$"
features: "^workclass$"
label: "^__LABEL$"
task: CLASSIFICATION
metadata {
  framework: "TF Keras"
}
[yggdrasil_decision_forests.model.hyperparameters_optimizer_v2.proto.hyperparameters_optimizer_config] {
  base_learner {
    learner: "GRADIENT_BOOSTED_TREES"
    features: "^age$"
    features: "^capital_gain$"
    features: "^capital_loss$"
    features: "^education$"
    features: "^education_num$"
    features: "^fnlwgt$"
    features: "^hours_per_week$"
    features: "^marital_status$"
    features: "^native_country$"
    features: "^occupation$"
    features: "^race$"
    features: "^relationship$"
    features: "^sex$"
    features: "^workclass$"
    label: "^__LABEL$"
    task: CLASSIFICATION
    random_seed: 123456
    pure_serving_model: false
    [yggdrasil_decision_forests.model.gradient_boosted_trees.proto.gradient_boosted_trees_config] {
      num_trees: 300
      decision_tree {
        max_depth: 6
        min_examples: 5
        in_split_min_examples_check: true
        keep_non_leaf_label_distribution: true
        num_candidate_attributes: -1
        missing_value_policy: GLOBAL_IMPUTATION
        allow_na_conditions: false
        categorical_set_greedy_forward {
          sampling: 0.1
          max_num_items: -1
          min_item_frequency: 1
        }
        growing_strategy_local {
        }
        categorical {
          cart {
          }
        }
        axis_aligned_split {
        }
        internal {
          sorting_strategy: PRESORTED
        }
        uplift {
          min_examples_in_treatment: 5
          split_score: KULLBACK_LEIBLER
        }
      }
      shrinkage: 0.1
      loss: DEFAULT
      validation_set_ratio: 0.1
      validation_interval_in_trees: 1
      early_stopping: VALIDATION_LOSS_INCREASE
      early_stopping_num_trees_look_ahead: 30
      l2_regularization: 0
      lambda_loss: 1
      mart {
      }
      adapt_subsample_for_maximum_training_duration: false
      l1_regularization: 0
      use_hessian_gain: false
      l2_regularization_categorical: 1
      stochastic_gradient_boosting {
        ratio: 1
      }
      apply_link_function: true
      compute_permutation_variable_importance: false
      binary_focal_loss_options {
        misprediction_exponent: 2
        positive_sample_coefficient: 0.5
      }
      early_stopping_initial_iteration: 10
    }
  }
  optimizer {
    optimizer_key: "RANDOM"
    [yggdrasil_decision_forests.model.hyperparameters_optimizer_v2.proto.random] {
      num_trials: 50
    }
  }
  base_learner_deployment {
    num_threads: 1
  }
  predefined_search_space {
  }
}

[INFO 24-04-20 11:43:26.8808 UTC kernel.cc:825] Deployment config:
cache_path: "/tmpfs/tmp/tmpl269t4qx/working_cache"
num_threads: 32
try_resume_training: true

[INFO 24-04-20 11:43:26.8809 UTC kernel.cc:887] Train model
[INFO 24-04-20 11:43:26.8812 UTC hyperparameters_optimizer.cc:214] Hyperparameter search space:
fields {
  name: "split_axis"
  discrete_candidates {
    possible_values {
      categorical: "AXIS_ALIGNED"
    }
    possible_values {
      categorical: "SPARSE_OBLIQUE"
    }
  }
  children {
    name: "sparse_oblique_projection_density_factor"
    discrete_candidates {
      possible_values {
        real: 1
      }
      possible_values {
        real: 2
      }
      possible_values {
        real: 3
      }
      possible_values {
        real: 4
      }
      possible_values {
        real: 5
      }
    }
    parent_discrete_values {
      possible_values {
        categorical: "SPARSE_OBLIQUE"
      }
    }
  }
  children {
    name: "sparse_oblique_normalization"
    discrete_candidates {
      possible_values {
        categorical: "NONE"
      }
      possible_values {
        categorical: "STANDARD_DEVIATION"
      }
      possible_values {
        categorical: "MIN_MAX"
      }
    }
    parent_discrete_values {
      possible_values {
        categorical: "SPARSE_OBLIQUE"
      }
    }
  }
  children {
    name: "sparse_oblique_weights"
    discrete_candidates {
      possible_values {
        categorical: "BINARY"
      }
      possible_values {
        categorical: "CONTINUOUS"
      }
    }
    parent_discrete_values {
      possible_values {
        categorical: "SPARSE_OBLIQUE"
      }
    }
  }
}
fields {
  name: "categorical_algorithm"
  discrete_candidates {
    possible_values {
      categorical: "CART"
    }
    possible_values {
      categorical: "RANDOM"
    }
  }
}
fields {
  name: "growing_strategy"
  discrete_candidates {
    possible_values {
      categorical: "LOCAL"
    }
    possible_values {
      categorical: "BEST_FIRST_GLOBAL"
    }
  }
  children {
    name: "max_num_nodes"
    discrete_candidates {
      possible_values {
        integer: 16
      }
      possible_values {
        integer: 32
      }
      possible_values {
        integer: 64
      }
      possible_values {
        integer: 128
      }
      possible_values {
        integer: 256
      }
      possible_values {
        integer: 512
      }
    }
    parent_discrete_values {
      possible_values {
        categorical: "BEST_FIRST_GLOBAL"
      }
    }
  }
  children {
    name: "max_depth"
    discrete_candidates {
      possible_values {
        integer: 3
      }
      possible_values {
        integer: 4
      }
      possible_values {
        integer: 6
      }
      possible_values {
        integer: 8
      }
    }
    parent_discrete_values {
      possible_values {
        categorical: "LOCAL"
      }
    }
  }
}
fields {
  name: "sampling_method"
  discrete_candidates {
    possible_values {
      categorical: "RANDOM"
    }
  }
  children {
    name: "subsample"
    discrete_candidates {
      possible_values {
        real: 0.6
      }
      possible_values {
        real: 0.8
      }
      possible_values {
        real: 0.9
      }
      possible_values {
        real: 1
      }
    }
    parent_discrete_values {
      possible_values {
        categorical: "RANDOM"
      }
    }
  }
}
fields {
  name: "shrinkage"
  discrete_candidates {
    possible_values {
      real: 0.02
    }
    possible_values {
      real: 0.05
    }
    possible_values {
      real: 0.1
    }
  }
}
fields {
  name: "min_examples"
  discrete_candidates {
    possible_values {
      integer: 5
    }
    possible_values {
      integer: 7
    }
    possible_values {
      integer: 10
    }
    possible_values {
      integer: 20
    }
  }
}
fields {
  name: "use_hessian_gain"
  discrete_candidates {
    possible_values {
      categorical: "true"
    }
    possible_values {
      categorical: "false"
    }
  }
}
fields {
  name: "num_candidate_attributes_ratio"
  discrete_candidates {
    possible_values {
      real: 0.2
    }
    possible_values {
      real: 0.5
    }
    possible_values {
      real: 0.9
    }
    possible_values {
      real: 1
    }
  }
}

[INFO 24-04-20 11:43:26.8814 UTC hyperparameters_optimizer.cc:509] Start local tuner with 1 parallel trial(s), each with 32 thread(s)
[INFO 24-04-20 11:43:26.8819 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:43:26.8819 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:43:26.8882 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:43:27.1834 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.017080 train-accuracy:0.761895 valid-loss:1.072045 valid-accuracy:0.736609
[INFO 24-04-20 11:43:37.7866 UTC gradient_boosted_trees.cc:1592]  num-trees:37 train-loss:0.556901 train-accuracy:0.883553 valid-loss:0.652912 valid-accuracy:0.849048
[INFO 24-04-20 11:44:08.1161 UTC gradient_boosted_trees.cc:1592]  num-trees:129 train-loss:0.440547 train-accuracy:0.913164 valid-loss:0.635362 valid-accuracy:0.853032
[INFO 24-04-20 11:44:10.1389 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.631539
[INFO 24-04-20 11:44:10.1390 UTC gradient_boosted_trees.cc:270] Truncates the model to 105 tree(s) i.e. 105  iteration(s).
[INFO 24-04-20 11:44:10.1394 UTC gradient_boosted_trees.cc:333] Final model num-trees:105 valid-loss:0.631539 valid-accuracy:0.854803
[INFO 24-04-20 11:44:10.1413 UTC hyperparameters_optimizer.cc:593] [1/50] Score: -0.631539 / -0.631539 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 32 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 10 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 24-04-20 11:44:10.1414 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:44:10.1414 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:44:10.1463 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:44:10.3488 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.079625 train-accuracy:0.761895 valid-loss:1.137371 valid-accuracy:0.736609
[INFO 24-04-20 11:44:38.2527 UTC gradient_boosted_trees.cc:1592]  num-trees:136 train-loss:0.558131 train-accuracy:0.876297 valid-loss:0.607508 valid-accuracy:0.868526
[INFO 24-04-20 11:45:08.4404 UTC gradient_boosted_trees.cc:1592]  num-trees:282 train-loss:0.498537 train-accuracy:0.888813 valid-loss:0.580250 valid-accuracy:0.869411
[INFO 24-04-20 11:45:12.1156 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.493187 train-accuracy:0.890372 valid-loss:0.579161 valid-accuracy:0.868969
[INFO 24-04-20 11:45:12.1157 UTC gradient_boosted_trees.cc:270] Truncates the model to 299 tree(s) i.e. 299  iteration(s).
[INFO 24-04-20 11:45:12.1157 UTC gradient_boosted_trees.cc:333] Final model num-trees:299 valid-loss:0.579139 valid-accuracy:0.868969
[INFO 24-04-20 11:45:12.1228 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:45:12.1228 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:45:12.1241 UTC hyperparameters_optimizer.cc:593] [2/50] Score: -0.579139 / -0.579139 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 2 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 128 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.8 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 10 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 24-04-20 11:45:12.1284 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:45:12.4485 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.007886 train-accuracy:0.761895 valid-loss:1.061560 valid-accuracy:0.736609
[INFO 24-04-20 11:45:38.4822 UTC gradient_boosted_trees.cc:1592]  num-trees:80 train-loss:0.422466 train-accuracy:0.912434 valid-loss:0.578831 valid-accuracy:0.865870
[INFO 24-04-20 11:45:44.1534 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.576524
[INFO 24-04-20 11:45:44.1535 UTC gradient_boosted_trees.cc:270] Truncates the model to 67 tree(s) i.e. 67  iteration(s).
[INFO 24-04-20 11:45:44.1545 UTC gradient_boosted_trees.cc:333] Final model num-trees:67 valid-loss:0.576524 valid-accuracy:0.867198
[INFO 24-04-20 11:45:44.1584 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:45:44.1585 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:45:44.1647 UTC hyperparameters_optimizer.cc:593] [3/50] Score: -0.576524 / -0.576524 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 3 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 24-04-20 11:45:44.1675 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:45:44.3624 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.016576 train-accuracy:0.761895 valid-loss:1.072904 valid-accuracy:0.736609
[INFO 24-04-20 11:46:08.6550 UTC gradient_boosted_trees.cc:1592]  num-trees:120 train-loss:0.458457 train-accuracy:0.900258 valid-loss:0.580639 valid-accuracy:0.866313
[INFO 24-04-20 11:46:14.2095 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.58024
[INFO 24-04-20 11:46:14.2095 UTC gradient_boosted_trees.cc:270] Truncates the model to 117 tree(s) i.e. 117  iteration(s).
[INFO 24-04-20 11:46:14.2099 UTC gradient_boosted_trees.cc:333] Final model num-trees:117 valid-loss:0.580240 valid-accuracy:0.866755
[INFO 24-04-20 11:46:14.2122 UTC hyperparameters_optimizer.cc:593] [4/50] Score: -0.58024 / -0.576524 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 1 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 64 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 20 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 24-04-20 11:46:14.2123 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:46:14.2123 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:46:14.2185 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:46:14.5606 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.011469 train-accuracy:0.761895 valid-loss:1.065462 valid-accuracy:0.736609
[INFO 24-04-20 11:46:38.7917 UTC gradient_boosted_trees.cc:1592]  num-trees:75 train-loss:0.473998 train-accuracy:0.897239 valid-loss:0.598055 valid-accuracy:0.861443
[INFO 24-04-20 11:46:46.7510 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.597285
[INFO 24-04-20 11:46:46.7511 UTC gradient_boosted_trees.cc:270] Truncates the model to 69 tree(s) i.e. 69  iteration(s).
[INFO 24-04-20 11:46:46.7515 UTC gradient_boosted_trees.cc:333] Final model num-trees:69 valid-loss:0.597285 valid-accuracy:0.860115
[INFO 24-04-20 11:46:46.7533 UTC hyperparameters_optimizer.cc:593] [5/50] Score: -0.597285 / -0.576524 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 256 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 20 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 24-04-20 11:46:46.7537 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:46:46.7537 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:46:46.7593 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:46:46.8919 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.080233 train-accuracy:0.761895 valid-loss:1.138164 valid-accuracy:0.736609
[INFO 24-04-20 11:47:08.8764 UTC gradient_boosted_trees.cc:1592]  num-trees:167 train-loss:0.555336 train-accuracy:0.881508 valid-loss:0.612655 valid-accuracy:0.863656
[INFO 24-04-20 11:47:26.3719 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.511197 train-accuracy:0.890225 valid-loss:0.592463 valid-accuracy:0.867198
[INFO 24-04-20 11:47:26.3719 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 11:47:26.3719 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.592463 valid-accuracy:0.867198
[INFO 24-04-20 11:47:26.3765 UTC hyperparameters_optimizer.cc:593] [6/50] Score: -0.592463 / -0.576524 HParams: [INFOfields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 1 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 32 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.6 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 20 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
 24-04-20 11:47:26.3766 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:47:26.3767 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:47:26.3853 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:47:26.6546 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.052418 train-accuracy:0.761895 valid-loss:1.109157 valid-accuracy:0.736609
[INFO 24-04-20 11:47:39.0564 UTC gradient_boosted_trees.cc:1592]  num-trees:46 train-loss:0.568038 train-accuracy:0.878586 valid-loss:0.618729 valid-accuracy:0.866313
[INFO 24-04-20 11:48:09.3068 UTC gradient_boosted_trees.cc:1592]  num-trees:155 train-loss:0.451158 train-accuracy:0.904885 valid-loss:0.580549 valid-accuracy:0.865870
[INFO 24-04-20 11:48:11.8108 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.579207
[INFO 24-04-20 11:48:11.8108 UTC gradient_boosted_trees.cc:270] Truncates the model to 134 tree(s) i.e. 134  iteration(s).
[INFO 24-04-20 11:48:11.8115 UTC gradient_boosted_trees.cc:333] Final model num-trees:134 valid-loss:0.579207 valid-accuracy:0.864099
[INFO 24-04-20 11:48:11.8152 UTC hyperparameters_optimizer.cc:593] [7/50] Score: -0.579207 / -0.576524 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 256 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.8 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 24-04-20 11:48:11.8153 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:48:11.8153 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:48:11.8225 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:48:11.9397 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.024398 train-accuracy:0.761895 valid-loss:1.080875 valid-accuracy:0.736609
[INFO 24-04-20 11:48:33.3505 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.607541
[INFO 24-04-20 11:48:33.3506 UTC gradient_boosted_trees.cc:270] Truncates the model to 148 tree(s) i.e. 148  iteration(s).
[INFO 24-04-20 11:48:33.3507 UTC gradient_boosted_trees.cc:333] Final model num-trees:148 valid-loss:0.607541 valid-accuracy:0.863214
[INFO 24-04-20 11:48:33.3515 UTC hyperparameters_optimizer.cc:593] [8/50] Score: -0.607541 / -0.576524 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 3 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 4 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.8 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 7 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 24-04-20 11:48:33.3516 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:48:33.3516 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:48:33.3567 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:48:33.6283 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.052939 train-accuracy:0.761895 valid-loss:1.109668 valid-accuracy:0.736609
[INFO 24-04-20 11:48:39.5145 UTC gradient_boosted_trees.cc:1592]  num-trees:22 train-loss:0.675009 train-accuracy:0.862660 valid-loss:0.725751 valid-accuracy:0.841523
[INFO 24-04-20 11:49:09.5556 UTC gradient_boosted_trees.cc:1592]  num-trees:131 train-loss:0.470891 train-accuracy:0.896070 valid-loss:0.587392 valid-accuracy:0.869411
[INFO 24-04-20 11:49:24.5348 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.585858
[INFO 24-04-20 11:49:24.5349 UTC gradient_boosted_trees.cc:270] Truncates the model to 155 tree(s) i.e. 155  iteration(s).
[INFO 24-04-20 11:49:24.5353 UTC gradient_boosted_trees.cc:333] Final model num-trees:155 valid-loss:0.585858 valid-accuracy:0.868083
[INFO 24-04-20 11:49:24.5390 UTC hyperparameters_optimizer.cc:593] [9/50] Score: -0.585858 / -0.576524 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 3 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 256 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 10 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 24-04-20 11:49:24.5391 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:49:24.5391 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:49:24.5458 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:49:24.9157 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.052843 train-accuracy:0.761895 valid-loss:1.111456 valid-accuracy:0.736609
[INFO 24-04-20 11:49:39.6689 UTC gradient_boosted_trees.cc:1592]  num-trees:41 train-loss:0.568976 train-accuracy:0.880047 valid-loss:0.669706 valid-accuracy:0.849491
[INFO 24-04-20 11:50:09.9498 UTC gradient_boosted_trees.cc:1592]  num-trees:123 train-loss:0.448902 train-accuracy:0.902985 valid-loss:0.628714 valid-accuracy:0.850376
[INFO 24-04-20 11:50:31.4511 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.627163
[INFO 24-04-20 11:50:31.4511 UTC gradient_boosted_trees.cc:270] Truncates the model to 151 tree(s) i.e. 151  iteration(s).
[INFO 24-04-20 11:50:31.4518 UTC gradient_boosted_trees.cc:333] Final model num-trees:151 valid-loss:0.627163 valid-accuracy:0.850819
[INFO 24-04-20 11:50:31.4576 UTC hyperparameters_optimizer.cc:593] [10/50] Score: -0.627163 / -0.576524 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 20 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 24-04-20 11:50:31.4577 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:50:31.4577 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:50:31.4663 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:50:31.5937 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.016328 train-accuracy:0.761895 valid-loss:1.070658 valid-accuracy:0.736609
[INFO 24-04-20 11:50:40.0563 UTC gradient_boosted_trees.cc:1592]  num-trees:73 train-loss:0.547573 train-accuracy:0.877660 valid-loss:0.599204 valid-accuracy:0.864099
[INFO 24-04-20 11:50:55.9566 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.584505
[INFO 24-04-20 11:50:55.9566 UTC gradient_boosted_trees.cc:270] Truncates the model to 173 tree(s) i.e. 173  iteration(s).
[INFO 24-04-20 11:50:55.9569 UTC gradient_boosted_trees.cc:333] Final model num-trees:173 valid-loss:0.584505 valid-accuracy:0.865427
[INFO 24-04-20 11:50:55.9584 UTC hyperparameters_optimizer.cc:593] [11/50] Score: -0.584505 / -0.576524 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 1 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.6 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 10 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 24-04-20 11:50:55.9586 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:50:55.9586 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:50:55.9644 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:50:56.2077 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.079718 train-accuracy:0.761895 valid-loss:1.137516 valid-accuracy:0.736609
[INFO 24-04-20 11:51:10.0877 UTC gradient_boosted_trees.cc:1592]  num-trees:57 train-loss:0.677483 train-accuracy:0.860761 valid-loss:0.727486 valid-accuracy:0.843293
[INFO 24-04-20 11:51:40.3105 UTC gradient_boosted_trees.cc:1592]  num-trees:180 train-loss:0.540261 train-accuracy:0.878488 valid-loss:0.606224 valid-accuracy:0.863656
[INFO 24-04-20 11:52:10.4827 UTC gradient_boosted_trees.cc:1592]  num-trees:299 train-loss:0.500395 train-accuracy:0.889690 valid-loss:0.589758 valid-accuracy:0.864985
[INFO 24-04-20 11:52:10.7256 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.500055 train-accuracy:0.889787 valid-loss:0.589640 valid-accuracy:0.865427
[INFO 24-04-20 11:52:10.7257 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 11:52:10.7257 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.589640 valid-accuracy:0.865427
[INFO 24-04-20 11:52:10.7324 UTC hyperparameters_optimizer.cc:593] [12/50] Score: -0.58964 / -0.576524 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 2 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 256 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 24-04-20 11:52:10.7328 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:52:10.7328 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:52:10.7422 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:52:10.8188 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.060520 train-accuracy:0.761895 valid-loss:1.117708 valid-accuracy:0.736609
[INFO 24-04-20 11:52:34.5050 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.540605 train-accuracy:0.879462 valid-loss:0.594701 valid-accuracy:0.868526
[INFO 24-04-20 11:52:34.5050 UTC gradient_boosted_trees.cc:270] Truncates the model to 299 tree(s) i.e. 299  iteration(s).
[INFO 24-04-20 11:52:34.5050 UTC gradient_boosted_trees.cc:333] Final model num-trees:299 valid-loss:0.594616 valid-accuracy:0.869411
[INFO 24-04-20 11:52:34.5062 UTC hyperparameters_optimizer.cc:593] [13/50] Score: -0.594616 / -0.576524 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 2 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 4 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.6 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 20 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 11:52:34.5063 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:52:34.5063 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:52:34.5123 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:52:34.6701 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.053581 train-accuracy:0.761895 valid-loss:1.110675 valid-accuracy:0.736609
[INFO 24-04-20 11:52:40.5919 UTC gradient_boosted_trees.cc:1592]  num-trees:38 train-loss:0.597302 train-accuracy:0.874836 valid-loss:0.646977 valid-accuracy:0.863214
[INFO 24-04-20 11:53:04.4197 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.588014
[INFO 24-04-20 11:53:04.4197 UTC gradient_boosted_trees.cc:270] Truncates the model to 153 tree(s) i.e. 153  iteration(s).
[INFO 24-04-20 11:53:04.4202 UTC gradient_boosted_trees.cc:333] Final model num-trees:153 valid-loss:0.588014 valid-accuracy:0.868969
[INFO 24-04-20 11:53:04.4241 UTC hyperparameters_optimizer.cc:593] [14/50] Score: -0.588014 / -0.576524 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 3 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 256 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.6 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 7 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 24-04-20 11:53:04.4242 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:53:04.4242 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:53:04.4312 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:53:04.6968 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.080979 train-accuracy:0.761895 valid-loss:1.138389 valid-accuracy:0.736609
[INFO 24-04-20 11:53:10.8203 UTC gradient_boosted_trees.cc:1592]  num-trees:25 train-loss:0.827971 train-accuracy:0.811961 valid-loss:0.869491 valid-accuracy:0.791058
[INFO 24-04-20 11:53:40.9819 UTC gradient_boosted_trees.cc:1592]  num-trees:143 train-loss:0.568514 train-accuracy:0.875177 valid-loss:0.607375 valid-accuracy:0.861886
[INFO 24-04-20 11:54:10.9841 UTC gradient_boosted_trees.cc:1592]  num-trees:259 train-loss:0.522482 train-accuracy:0.884673 valid-loss:0.582253 valid-accuracy:0.865870
[INFO 24-04-20 11:54:21.7716 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.511275 train-accuracy:0.887255 valid-loss:0.579076 valid-accuracy:0.866313
[INFO 24-04-20 11:54:21.7717 UTC gradient_boosted_trees.cc:270] Truncates the model to 299 tree(s) i.e. 299  iteration(s).
[INFO 24-04-20 11:54:21.7717 UTC gradient_boosted_trees.cc:333] Final model num-trees:299 valid-loss:0.579013 valid-accuracy:0.866313
[INFO 24-04-20 11:54:21.7777 UTC hyperparameters_optimizer.cc:593] [15/50] Score: -0.579013 / -0.576524 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 256 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.8 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 20 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 11:54:21.7778 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:54:21.7779 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:54:21.7871 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:54:22.0178 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.019006 train-accuracy:0.761895 valid-loss:1.073190 valid-accuracy:0.736609
[INFO 24-04-20 11:54:41.1749 UTC gradient_boosted_trees.cc:1592]  num-trees:79 train-loss:0.529136 train-accuracy:0.881069 valid-loss:0.587939 valid-accuracy:0.868969
[INFO 24-04-20 11:55:11.3356 UTC gradient_boosted_trees.cc:1592]  num-trees:198 train-loss:0.458779 train-accuracy:0.898407 valid-loss:0.577907 valid-accuracy:0.864985
[INFO 24-04-20 11:55:24.3297 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.576464
[INFO 24-04-20 11:55:24.3298 UTC gradient_boosted_trees.cc:270] Truncates the model to 220 tree(s) i.e. 220  iteration(s).
[INFO 24-04-20 11:55:24.3300 UTC gradient_boosted_trees.cc:333] Final model num-trees:220 valid-loss:0.576464 valid-accuracy:0.865427
[INFO 24-04-20 11:55:24.3325 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:55:24.3325 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:55:24.3351 UTC hyperparameters_optimizer.cc:593] [16/50] Score: -0.576464 / -0.576464 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 2 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 24-04-20 11:55:24.3388 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:55:24.5448 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.079152 train-accuracy:0.761895 valid-loss:1.137115 valid-accuracy:0.736609
[INFO 24-04-20 11:55:41.4136 UTC gradient_boosted_trees.cc:1592]  num-trees:85 train-loss:0.599402 train-accuracy:0.872303 valid-loss:0.662776 valid-accuracy:0.852590
[INFO 24-04-20 11:56:11.5979 UTC gradient_boosted_trees.cc:1592]  num-trees:234 train-loss:0.487885 train-accuracy:0.893489 valid-loss:0.597058 valid-accuracy:0.867198
[INFO 24-04-20 11:56:25.0461 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.462216 train-accuracy:0.900453 valid-loss:0.593662 valid-accuracy:0.867198
[INFO 24-04-20 11:56:25.0461 UTC gradient_boosted_trees.cc:270] Truncates the model to 294 tree(s) i.e. 294  iteration(s).
[INFO 24-04-20 11:56:25.0462 UTC gradient_boosted_trees.cc:333] Final model num-trees:294 valid-loss:0.593544 valid-accuracy:0.867198
[INFO 24-04-20 11:56:25.0549 UTC hyperparameters_optimizer.cc:593] [17/50] Score: -0.593544 / -0.576464 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 3 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.6 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 20 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 24-04-20 11:56:25.0550 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:56:25.0551 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:56:25.0661 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:56:25.2518 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.053989 train-accuracy:0.761895 valid-loss:1.111597 valid-accuracy:0.736609
[INFO 24-04-20 11:56:41.7763 UTC gradient_boosted_trees.cc:1592]  num-trees:90 train-loss:0.513245 train-accuracy:0.891784 valid-loss:0.612604 valid-accuracy:0.864542
[INFO 24-04-20 11:56:55.5599 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.605471
[INFO 24-04-20 11:56:55.5599 UTC gradient_boosted_trees.cc:270] Truncates the model to 133 tree(s) i.e. 133  iteration(s).
[INFO 24-04-20 11:56:55.5605 UTC gradient_boosted_trees.cc:333] Final model num-trees:133 valid-loss:0.605471 valid-accuracy:0.864985
[INFO 24-04-20 11:56:55.5644 UTC hyperparameters_optimizer.cc:593] [18/50] Score: -0.605471 / -0.576464 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 256 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.6 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 24-04-20 11:56:55.5645 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:56:55.5645 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:56:55.5717 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:56:55.8583 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.078470 train-accuracy:0.761895 valid-loss:1.135989 valid-accuracy:0.736609
[INFO 24-04-20 11:57:12.0757 UTC gradient_boosted_trees.cc:1592]  num-trees:55 train-loss:0.658252 train-accuracy:0.866361 valid-loss:0.718027 valid-accuracy:0.845950
[INFO 24-04-20 11:57:42.2076 UTC gradient_boosted_trees.cc:1592]  num-trees:155 train-loss:0.511689 train-accuracy:0.887060 valid-loss:0.601473 valid-accuracy:0.866755
[INFO 24-04-20 11:58:12.3039 UTC gradient_boosted_trees.cc:1592]  num-trees:256 train-loss:0.467628 train-accuracy:0.895875 valid-loss:0.583148 valid-accuracy:0.868526
[INFO 24-04-20 11:58:25.4031 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.450289 train-accuracy:0.900307 valid-loss:0.581562 valid-accuracy:0.868969
[INFO 24-04-20 11:58:25.4032 UTC gradient_boosted_trees.cc:270] Truncates the model to 296 tree(s) i.e. 296  iteration(s).
[INFO 24-04-20 11:58:25.4033 UTC gradient_boosted_trees.cc:333] Final model num-trees:296 valid-loss:0.581214 valid-accuracy:0.869411
[INFO 24-04-20 11:58:25.4147 UTC hyperparameters_optimizer.cc:593] [19/50] Score: -0.581214 / -0.576464 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 2 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 24-04-20 11:58:25.4151 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:58:25.4151 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:58:25.4276 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:58:25.5298 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.082692 train-accuracy:0.761895 valid-loss:1.140741 valid-accuracy:0.736609
[INFO 24-04-20 11:58:42.3949 UTC gradient_boosted_trees.cc:1592]  num-trees:165 train-loss:0.625270 train-accuracy:0.859981 valid-loss:0.651116 valid-accuracy:0.846392
[INFO 24-04-20 11:58:56.4433 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.590130 train-accuracy:0.865290 valid-loss:0.620030 valid-accuracy:0.855688
[INFO 24-04-20 11:58:56.4433 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 11:58:56.4433 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.620030 valid-accuracy:0.855688
[INFO 24-04-20 11:58:56.4445 UTC hyperparameters_optimizer.cc:593] [20/50] Score: -0.62003 / -0.576464 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 4 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.6 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 10 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 11:58:56.4446 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:58:56.4446 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:58:56.4504 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:58:56.5735 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.085297 train-accuracy:0.761895 valid-loss:1.143266 valid-accuracy:0.736609
[INFO 24-04-20 11:59:12.3995 UTC gradient_boosted_trees.cc:1592]  num-trees:135 train-loss:0.675725 train-accuracy:0.853942 valid-loss:0.706471 valid-accuracy:0.840637
[INFO 24-04-20 11:59:31.6827 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.616435 train-accuracy:0.859543 valid-loss:0.645493 valid-accuracy:0.849491
[INFO 24-04-20 11:59:31.6827 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 11:59:31.6828 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.645493 valid-accuracy:0.849491
[INFO 24-04-20 11:59:31.6835 UTC hyperparameters_optimizer.cc:593] [21/50] Score: -0.645493 / -0.576464 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 3 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 10 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 24-04-20 11:59:31.6836 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 11:59:31.6836 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 11:59:31.6889 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 11:59:31.8587 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.080746 train-accuracy:0.761895 valid-loss:1.138830 valid-accuracy:0.736609
[INFO 24-04-20 11:59:42.5366 UTC gradient_boosted_trees.cc:1592]  num-trees:64 train-loss:0.675732 train-accuracy:0.859787 valid-loss:0.713405 valid-accuracy:0.846392
[INFO 24-04-20 12:00:12.5430 UTC gradient_boosted_trees.cc:1592]  num-trees:240 train-loss:0.539488 train-accuracy:0.879560 valid-loss:0.596245 valid-accuracy:0.870739
[INFO 24-04-20 12:00:22.7129 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.522861 train-accuracy:0.883748 valid-loss:0.587343 valid-accuracy:0.872067
[INFO 24-04-20 12:00:22.7129 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 12:00:22.7130 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.587343 valid-accuracy:0.872067
[INFO 24-04-20 12:00:22.7171 UTC hyperparameters_optimizer.cc:593] [22/50] Score: -0.587343 / -0.576464 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 1 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 6 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 7 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 12:00:22.7172 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:00:22.7172 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:00:22.7252 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:00:22.9412 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.017781 train-accuracy:0.761895 valid-loss:1.072645 valid-accuracy:0.736609
[INFO 24-04-20 12:00:42.7439 UTC gradient_boosted_trees.cc:1592]  num-trees:93 train-loss:0.486231 train-accuracy:0.897726 valid-loss:0.605622 valid-accuracy:0.861443
[INFO 24-04-20 12:00:49.1122 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.605239
[INFO 24-04-20 12:00:49.1123 UTC gradient_boosted_trees.cc:270] Truncates the model to 92 tree(s) i.e. 92  iteration(s).
[INFO 24-04-20 12:00:49.1127 UTC gradient_boosted_trees.cc:333] Final model num-trees:92 valid-loss:0.605239 valid-accuracy:0.859672
[INFO 24-04-20 12:00:49.1145 UTC hyperparameters_optimizer.cc:593] [23/50] Score: -0.605239 / -0.576464 HParams: [INFOfields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 6 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.8 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } } 24-04-20 12:00:49.1146 UTC gradient_boosted_trees.cc:544] Default loss set to 
BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:00:49.1146 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:00:49.1203 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:00:49.3295 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.014103 train-accuracy:0.761895 valid-loss:1.069569 valid-accuracy:0.736609
[INFO 24-04-20 12:01:09.2048 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.620195
[INFO 24-04-20 12:01:09.2049 UTC gradient_boosted_trees.cc:270] Truncates the model to 65 tree(s) i.e. 65  iteration(s).
[INFO 24-04-20 12:01:09.2054 UTC gradient_boosted_trees.cc:333] Final model num-trees:65 valid-loss:0.620195 valid-accuracy:0.861886
[INFO 24-04-20 12:01:09.2069 UTC hyperparameters_optimizer.cc:593] [24/50] Score: -0.620195 / -0.576464 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 32 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.6 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 12:01:09.2074 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:01:09.2075 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:01:09.2129 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:01:09.4876 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.054467 train-accuracy:0.761895 valid-loss:1.111421 valid-accuracy:0.736609
[INFO 24-04-20 12:01:12.8650 UTC gradient_boosted_trees.cc:1592]  num-trees:13 train-loss:0.776072 train-accuracy:0.822335 valid-loss:0.829307 valid-accuracy:0.796370
[INFO 24-04-20 12:01:42.9181 UTC gradient_boosted_trees.cc:1592]  num-trees:117 train-loss:0.490031 train-accuracy:0.891248 valid-loss:0.602710 valid-accuracy:0.858787
[INFO 24-04-20 12:02:10.5251 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.597233
[INFO 24-04-20 12:02:10.5252 UTC gradient_boosted_trees.cc:270] Truncates the model to 182 tree(s) i.e. 182  iteration(s).
[INFO 24-04-20 12:02:10.5257 UTC gradient_boosted_trees.cc:333] Final model num-trees:182 valid-loss:0.597233 valid-accuracy:0.861000
[INFO 24-04-20 12:02:10.5303 UTC hyperparameters_optimizer.cc:593] [25/50] Score: -0.597233 / -0.576464 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 512 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 24-04-20 12:02:10.5305 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:02:10.5305 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:02:10.5382 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:02:10.8168 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.080744 train-accuracy:0.761895 valid-loss:1.138851 valid-accuracy:0.736609
[INFO 24-04-20 12:02:13.0463 UTC gradient_boosted_trees.cc:1592]  num-trees:9 train-loss:0.969269 train-accuracy:0.761895 valid-loss:1.024583 valid-accuracy:0.736609
[INFO 24-04-20 12:02:43.3098 UTC gradient_boosted_trees.cc:1592]  num-trees:117 train-loss:0.577927 train-accuracy:0.875177 valid-loss:0.659990 valid-accuracy:0.850819
[INFO 24-04-20 12:03:13.4366 UTC gradient_boosted_trees.cc:1592]  num-trees:224 train-loss:0.510443 train-accuracy:0.887401 valid-loss:0.632056 valid-accuracy:0.855688
[INFO 24-04-20 12:03:34.6953 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.481158 train-accuracy:0.894657 valid-loss:0.627246 valid-accuracy:0.853918
[INFO 24-04-20 12:03:34.6953 UTC gradient_boosted_trees.cc:270] Truncates the model to 294 tree(s) i.e. 294  iteration(s).
[INFO 24-04-20 12:03:34.6954 UTC gradient_boosted_trees.cc:333] Final model num-trees:294 valid-loss:0.627238 valid-accuracy:0.854803
[INFO 24-04-20 12:03:34.7026 UTC hyperparameters_optimizer.cc:593] [26/50] Score: -0.627238 / -0.576464 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 64 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.8 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 7 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 12:03:34.7027 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:03:34.7027 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:03:34.7126 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:03:35.0569 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.079504 train-accuracy:0.761895 valid-loss:1.137702 valid-accuracy:0.736609
[INFO 24-04-20 12:03:43.5018 UTC gradient_boosted_trees.cc:1592]  num-trees:26 train-loss:0.801994 train-accuracy:0.810208 valid-loss:0.861103 valid-accuracy:0.786189
[INFO 24-04-20 12:04:13.7312 UTC gradient_boosted_trees.cc:1592]  num-trees:114 train-loss:0.546379 train-accuracy:0.890566 valid-loss:0.643705 valid-accuracy:0.853918
[INFO 24-04-20 12:04:43.7507 UTC gradient_boosted_trees.cc:1592]  num-trees:202 train-loss:0.480620 train-accuracy:0.901670 valid-loss:0.612598 valid-accuracy:0.860115
[INFO 24-04-20 12:05:13.9332 UTC gradient_boosted_trees.cc:1592]  num-trees:289 train-loss:0.441230 train-accuracy:0.912288 valid-loss:0.605467 valid-accuracy:0.859672
[INFO 24-04-20 12:05:17.7591 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.436997 train-accuracy:0.912872 valid-loss:0.604192 valid-accuracy:0.858787
[INFO 24-04-20 12:05:17.7592 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 12:05:17.7592 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.604192 valid-accuracy:0.858787
[INFO 24-04-20 12:05:17.7704 UTC hyperparameters_optimizer.cc:593] [27/50] Score: -0.604192 / -0.576464 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 10 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 24-04-20 12:05:17.7705 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:05:17.7705 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:05:17.7845 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:05:18.0993 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.079121 train-accuracy:0.761895 valid-loss:1.136935 valid-accuracy:0.736609
[INFO 24-04-20 12:05:44.0798 UTC gradient_boosted_trees.cc:1592]  num-trees:82 train-loss:0.593026 train-accuracy:0.874154 valid-loss:0.652801 valid-accuracy:0.853032
[INFO 24-04-20 12:06:14.0818 UTC gradient_boosted_trees.cc:1592]  num-trees:174 train-loss:0.507478 train-accuracy:0.888618 valid-loss:0.588100 valid-accuracy:0.864099
[INFO 24-04-20 12:06:44.2572 UTC gradient_boosted_trees.cc:1592]  num-trees:266 train-loss:0.470497 train-accuracy:0.896021 valid-loss:0.575175 valid-accuracy:0.867198
[INFO 24-04-20 12:06:55.6128 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.458649 train-accuracy:0.899089 valid-loss:0.573679 valid-accuracy:0.865870
[INFO 24-04-20 12:06:55.6128 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 12:06:55.6128 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.573679 valid-accuracy:0.865870
[INFO 24-04-20 12:06:55.6249 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:06:55.6250 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:06:55.6269 UTC hyperparameters_optimizer.cc:593] [28/50] Score: -0.573679 / -0.573679 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 24-04-20 12:06:55.6312 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:06:55.7339 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.034401 train-accuracy:0.761895 valid-loss:1.090276 valid-accuracy:0.736609
[INFO 24-04-20 12:07:14.2759 UTC gradient_boosted_trees.cc:1592]  num-trees:182 train-loss:0.577740 train-accuracy:0.869478 valid-loss:0.624283 valid-accuracy:0.858787
[INFO 24-04-20 12:07:26.4369 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.559424 train-accuracy:0.873813 valid-loss:0.617982 valid-accuracy:0.862771
[INFO 24-04-20 12:07:26.4369 UTC gradient_boosted_trees.cc:270] Truncates the model to 296 tree(s) i.e. 296  iteration(s).
[INFO 24-04-20 12:07:26.4370 UTC gradient_boosted_trees.cc:333] Final model num-trees:296 valid-loss:0.617692 valid-accuracy:0.862771
[INFO 24-04-20 12:07:26.4377 UTC hyperparameters_optimizer.cc:593] [29/50] Score: -0.617692 / -0.573679 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 3 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 20 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 24-04-20 12:07:26.4378 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:07:26.4378 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:07:26.4430 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:07:26.6506 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.009800 train-accuracy:0.761895 valid-loss:1.063156 valid-accuracy:0.736609
[INFO 24-04-20 12:07:44.3201 UTC gradient_boosted_trees.cc:1592]  num-trees:86 train-loss:0.447820 train-accuracy:0.906784 valid-loss:0.584784 valid-accuracy:0.870739
[INFO 24-04-20 12:08:03.0640 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.582429
[INFO 24-04-20 12:08:03.0641 UTC gradient_boosted_trees.cc:270] Truncates the model to 146 tree(s) i.e. 146  iteration(s).
[INFO 24-04-20 12:08:03.0647 UTC gradient_boosted_trees.cc:333] Final model num-trees:146 valid-loss:0.582429 valid-accuracy:0.868526
[INFO 24-04-20 12:08:03.0688 UTC hyperparameters_optimizer.cc:593] [30/50] Score: -0.582429 / -0.573679 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 1 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 512 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 24-04-20 12:08:03.0689 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:08:03.0690 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:08:03.0763 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:08:03.3195 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.050215 train-accuracy:0.761895 valid-loss:1.106337 valid-accuracy:0.736609
[INFO 24-04-20 12:08:14.4202 UTC gradient_boosted_trees.cc:1592]  num-trees:46 train-loss:0.542935 train-accuracy:0.887693 valid-loss:0.615639 valid-accuracy:0.864985
[INFO 24-04-20 12:08:44.5841 UTC gradient_boosted_trees.cc:1592]  num-trees:168 train-loss:0.400861 train-accuracy:0.919739 valid-loss:0.581155 valid-accuracy:0.868969
[INFO 24-04-20 12:08:46.3216 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.579083
[INFO 24-04-20 12:08:46.3217 UTC gradient_boosted_trees.cc:270] Truncates the model to 145 tree(s) i.e. 145  iteration(s).
[INFO 24-04-20 12:08:46.3226 UTC gradient_boosted_trees.cc:333] Final model num-trees:145 valid-loss:0.579083 valid-accuracy:0.871182
[INFO 24-04-20 12:08:46.3295 UTC hyperparameters_optimizer.cc:593] [31/50] Score: -0.579083 / -0.573679 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 2 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.8 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 7 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 12:08:46.3298 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:08:46.3299 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:08:46.3387 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:08:46.4970 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.060070 train-accuracy:0.761895 valid-loss:1.117365 valid-accuracy:0.736609
[INFO 24-04-20 12:09:14.6947 UTC gradient_boosted_trees.cc:1592]  num-trees:172 train-loss:0.561195 train-accuracy:0.871816 valid-loss:0.603439 valid-accuracy:0.861886
[INFO 24-04-20 12:09:36.0270 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.534396 train-accuracy:0.878732 valid-loss:0.592159 valid-accuracy:0.864985
[INFO 24-04-20 12:09:36.0270 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 12:09:36.0270 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.592159 valid-accuracy:0.864985
[INFO 24-04-20 12:09:36.0281 UTC hyperparameters_optimizer.cc:593] [32/50] Score: -0.592159 / -0.573679 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 4 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 10 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 24-04-20 12:09:36.0282 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:09:36.0283 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:09:36.0339 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:09:36.2970 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.082344 train-accuracy:0.761895 valid-loss:1.140383 valid-accuracy:0.736609
[INFO 24-04-20 12:09:44.7215 UTC gradient_boosted_trees.cc:1592]  num-trees:35 train-loss:0.809653 train-accuracy:0.812935 valid-loss:0.859870 valid-accuracy:0.786189
[INFO 24-04-20 12:10:14.7416 UTC gradient_boosted_trees.cc:1592]  num-trees:153 train-loss:0.611812 train-accuracy:0.862027 valid-loss:0.654732 valid-accuracy:0.841965
[INFO 24-04-20 12:10:44.9008 UTC gradient_boosted_trees.cc:1592]  num-trees:264 train-loss:0.571651 train-accuracy:0.870209 valid-loss:0.622257 valid-accuracy:0.853475
[INFO 24-04-20 12:10:55.1758 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.563066 train-accuracy:0.873228 valid-loss:0.617188 valid-accuracy:0.858344
[INFO 24-04-20 12:10:55.1758 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 12:10:55.1758 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.617188 valid-accuracy:0.858344
[INFO 24-04-20 12:10:55.1785 UTC hyperparameters_optimizer.cc:593] [33/50] Score: -0.617188 / -0.573679 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 7 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 24-04-20 12:10:55.1786 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:10:55.1786 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:10:55.1850 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:10:55.5169 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.056010 train-accuracy:0.761895 valid-loss:1.115039 valid-accuracy:0.736609
[INFO 24-04-20 12:11:14.9320 UTC gradient_boosted_trees.cc:1592]  num-trees:62 train-loss:0.560039 train-accuracy:0.882092 valid-loss:0.659251 valid-accuracy:0.845064
[INFO 24-04-20 12:11:45.0392 UTC gradient_boosted_trees.cc:1592]  num-trees:155 train-loss:0.480452 train-accuracy:0.900794 valid-loss:0.635471 valid-accuracy:0.852590
[INFO 24-04-20 12:12:11.1738 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.633523
[INFO 24-04-20 12:12:11.1738 UTC gradient_boosted_trees.cc:270] Truncates the model to 205 tree(s) i.e. 205  iteration(s).
[INFO 24-04-20 12:12:11.1744 UTC gradient_boosted_trees.cc:333] Final model num-trees:205 valid-loss:0.633523 valid-accuracy:0.854803
[INFO 24-04-20 12:12:11.1789 UTC hyperparameters_optimizer.cc:593] [34/50] Score: -0.633523 / -0.573679 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 64 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 20 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 12:12:11.1790 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:12:11.1791 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:12:11.1871 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:12:11.4212 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.080643 train-accuracy:0.761895 valid-loss:1.138458 valid-accuracy:0.736609
[INFO 24-04-20 12:12:15.1625 UTC gradient_boosted_trees.cc:1592]  num-trees:17 train-loss:0.893533 train-accuracy:0.761895 valid-loss:0.941465 valid-accuracy:0.736609
[INFO 24-04-20 12:12:45.2827 UTC gradient_boosted_trees.cc:1592]  num-trees:145 train-loss:0.581445 train-accuracy:0.869478 valid-loss:0.621648 valid-accuracy:0.859230
[INFO 24-04-20 12:13:15.4609 UTC gradient_boosted_trees.cc:1592]  num-trees:271 train-loss:0.532678 train-accuracy:0.879852 valid-loss:0.591891 valid-accuracy:0.866755
[INFO 24-04-20 12:13:22.3835 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.525324 train-accuracy:0.882677 valid-loss:0.588533 valid-accuracy:0.869854
[INFO 24-04-20 12:13:22.3836 UTC gradient_boosted_trees.cc:270] Truncates the model to 299 tree(s) i.e. 299  iteration(s).
[INFO 24-04-20 12:13:22.3836 UTC gradient_boosted_trees.cc:333] Final model num-trees:299 valid-loss:0.588517 valid-accuracy:0.870297
[INFO 24-04-20 12:13:22.3877 UTC hyperparameters_optimizer.cc:593] [35/50] Score: -0.588517 / -0.573679 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 6 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 7 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 24-04-20 12:13:22.3878 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:13:22.3878 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:13:22.3953 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:13:22.6347 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.008621 train-accuracy:0.761895 valid-loss:1.061219 valid-accuracy:0.736609
[INFO 24-04-20 12:13:45.6070 UTC gradient_boosted_trees.cc:1592]  num-trees:100 train-loss:0.441264 train-accuracy:0.907174 valid-loss:0.576598 valid-accuracy:0.868083
[INFO 24-04-20 12:13:48.4084 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.571786
[INFO 24-04-20 12:13:48.4084 UTC gradient_boosted_trees.cc:270] Truncates the model to 82 tree(s) i.e. 82  iteration(s).
[INFO 24-04-20 12:13:48.4090 UTC gradient_boosted_trees.cc:333] Final model num-trees:82 valid-loss:0.571786 valid-accuracy:0.871182
[INFO 24-04-20 12:13:48.4118 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:13:48.4118 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:13:48.4231 UTC hyperparameters_optimizer.cc:593] [36/50] Score: -0.571786 / -0.571786 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 2 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 64 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 7 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 12:13:48.4253 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:13:48.7022 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.022495 train-accuracy:0.761895 valid-loss:1.078056 valid-accuracy:0.736609
[INFO 24-04-20 12:14:15.8238 UTC gradient_boosted_trees.cc:1592]  num-trees:96 train-loss:0.531460 train-accuracy:0.886427 valid-loss:0.631790 valid-accuracy:0.851704
[INFO 24-04-20 12:14:44.2647 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.625075
[INFO 24-04-20 12:14:44.2648 UTC gradient_boosted_trees.cc:270] Truncates the model to 175 tree(s) i.e. 175  iteration(s).
[INFO 24-04-20 12:14:44.2651 UTC gradient_boosted_trees.cc:333] Final model num-trees:175 valid-loss:0.625075 valid-accuracy:0.853918
[INFO 24-04-20 12:14:44.2668 UTC hyperparameters_optimizer.cc:593] [37/50] Score: -0.625075 / -0.571786 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 20 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 12:14:44.2671 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:14:44.2671 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:14:44.2730 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:14:44.3195 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.080831 train-accuracy:0.761895 valid-loss:1.138862 valid-accuracy:0.736609
[INFO 24-04-20 12:14:45.8472 UTC gradient_boosted_trees.cc:1592]  num-trees:42 train-loss:0.756284 train-accuracy:0.846735 valid-loss:0.797705 valid-accuracy:0.826915
[INFO 24-04-20 12:14:55.2152 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.531490 train-accuracy:0.883651 valid-loss:0.588020 valid-accuracy:0.872067
[INFO 24-04-20 12:14:55.2152 UTC gradient_boosted_trees.cc:270] Truncates the model to 299 tree(s) i.e. 299  iteration(s).
[INFO 24-04-20 12:14:55.2153 UTC gradient_boosted_trees.cc:333] Final model num-trees:299 valid-loss:0.588008 valid-accuracy:0.872067
[INFO 24-04-20 12:14:55.2192 UTC hyperparameters_optimizer.cc:593] [38/50] Score: -0.588008 / -0.571786 HParams: fields { name: "split_axis" value { categorical: "AXIS_ALIGNED" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 6 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.8 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 24-04-20 12:14:55.2196 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:14:55.2196 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:14:55.2271 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:14:55.3151 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.035720 train-accuracy:0.761895 valid-loss:1.091776 valid-accuracy:0.736609
[INFO 24-04-20 12:15:15.9067 UTC gradient_boosted_trees.cc:1592]  num-trees:238 train-loss:0.559601 train-accuracy:0.874300 valid-loss:0.610479 valid-accuracy:0.864542
[INFO 24-04-20 12:15:21.2798 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.549374 train-accuracy:0.876881 valid-loss:0.605893 valid-accuracy:0.866313
[INFO 24-04-20 12:15:21.2798 UTC gradient_boosted_trees.cc:270] Truncates the model to 299 tree(s) i.e. 299  iteration(s).
[INFO 24-04-20 12:15:21.2798 UTC gradient_boosted_trees.cc:333] Final model num-trees:299 valid-loss:0.605842 valid-accuracy:0.866313
[INFO 24-04-20 12:15:21.2805 UTC hyperparameters_optimizer.cc:593] [39/50] Score: -0.605842 / -0.571786 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 3 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.8 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 7 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 24-04-20 12:15:21.2807 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:15:21.2807 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:15:21.2862 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:15:21.5646 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.080070 train-accuracy:0.761895 valid-loss:1.138312 valid-accuracy:0.736609
[INFO 24-04-20 12:15:45.9122 UTC gradient_boosted_trees.cc:1592]  num-trees:88 train-loss:0.606703 train-accuracy:0.871816 valid-loss:0.649034 valid-accuracy:0.857902
[INFO 24-04-20 12:16:16.0088 UTC gradient_boosted_trees.cc:1592]  num-trees:195 train-loss:0.522986 train-accuracy:0.887498 valid-loss:0.588079 valid-accuracy:0.868969
[INFO 24-04-20 12:16:45.8272 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.489488 train-accuracy:0.894755 valid-loss:0.577959 valid-accuracy:0.869854
[INFO 24-04-20 12:16:45.8272 UTC gradient_boosted_trees.cc:270] Truncates the model to 298 tree(s) i.e. 298  iteration(s).
[INFO 24-04-20 12:16:45.8273 UTC gradient_boosted_trees.cc:333] Final model num-trees:298 valid-loss:0.577896 valid-accuracy:0.869411
[INFO 24-04-20 12:16:45.8336 UTC hyperparameters_optimizer.cc:593] [40/50] Score: -0.577896 / -0.571786 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 256 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.8 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 20 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 12:16:45.8338 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:16:45.8338 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:16:45.8442 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:16:45.9250 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.033852 train-accuracy:0.761895 valid-loss:1.089140 valid-accuracy:0.736609
[INFO 24-04-20 12:16:46.0902 UTC gradient_boosted_trees.cc:1592]  num-trees:3 train-loss:0.944534 train-accuracy:0.761895 valid-loss:0.994035 valid-accuracy:0.736609
[INFO 24-04-20 12:17:11.1035 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.548920 train-accuracy:0.877125 valid-loss:0.598300 valid-accuracy:0.866755
[INFO 24-04-20 12:17:11.1036 UTC gradient_boosted_trees.cc:270] Truncates the model to 275 tree(s) i.e. 275  iteration(s).
[INFO 24-04-20 12:17:11.1036 UTC gradient_boosted_trees.cc:333] Final model num-trees:275 valid-loss:0.597798 valid-accuracy:0.867198
[INFO 24-04-20 12:17:11.1043 UTC hyperparameters_optimizer.cc:593] [41/50] Score: -0.597798 / -0.571786 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 3 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 3 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.8 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 7 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 12:17:11.1045 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:17:11.1045 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:17:11.1095 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:17:11.3169 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.055057 train-accuracy:0.761895 valid-loss:1.112117 valid-accuracy:0.736609
[INFO 24-04-20 12:17:16.1276 UTC gradient_boosted_trees.cc:1592]  num-trees:24 train-loss:0.676387 train-accuracy:0.861783 valid-loss:0.737358 valid-accuracy:0.842408
[INFO 24-04-20 12:17:46.2224 UTC gradient_boosted_trees.cc:1592]  num-trees:163 train-loss:0.464683 train-accuracy:0.906200 valid-loss:0.633622 valid-accuracy:0.853032
[INFO 24-04-20 12:17:53.1728 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.633292
[INFO 24-04-20 12:17:53.1728 UTC gradient_boosted_trees.cc:270] Truncates the model to 165 tree(s) i.e. 165  iteration(s).
[INFO 24-04-20 12:17:53.1734 UTC gradient_boosted_trees.cc:333] Final model num-trees:165 valid-loss:0.633292 valid-accuracy:0.852147
[INFO 24-04-20 12:17:53.1776 UTC hyperparameters_optimizer.cc:593] [42/50] Score: -0.633292 / -0.571786 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 512 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.6 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 10 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 24-04-20 12:17:53.1777 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:17:53.1778 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:17:53.1859 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:17:53.3984 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.011378 train-accuracy:0.761895 valid-loss:1.065565 valid-accuracy:0.736609
[INFO 24-04-20 12:18:16.2661 UTC gradient_boosted_trees.cc:1592]  num-trees:106 train-loss:0.450177 train-accuracy:0.907904 valid-loss:0.587472 valid-accuracy:0.866755
[INFO 24-04-20 12:18:18.1861 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.584868
[INFO 24-04-20 12:18:18.1861 UTC gradient_boosted_trees.cc:270] Truncates the model to 85 tree(s) i.e. 85  iteration(s).
[INFO 24-04-20 12:18:18.1867 UTC gradient_boosted_trees.cc:333] Final model num-trees:85 valid-loss:0.584868 valid-accuracy:0.866313
[INFO 24-04-20 12:18:18.1886 UTC hyperparameters_optimizer.cc:593] [43/50] Score: -0.584868 / -0.571786 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 2 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 32 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 10 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.2 } }
[INFO 24-04-20 12:18:18.1888 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:18:18.1889 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:18:18.1950 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:18:18.4742 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.007702 train-accuracy:0.761895 valid-loss:1.061728 valid-accuracy:0.736609
[INFO 24-04-20 12:18:46.4609 UTC gradient_boosted_trees.cc:1592]  num-trees:102 train-loss:0.434600 train-accuracy:0.908878 valid-loss:0.585372 valid-accuracy:0.868526
[INFO 24-04-20 12:18:49.5825 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.581309
[INFO 24-04-20 12:18:49.5825 UTC gradient_boosted_trees.cc:270] Truncates the model to 83 tree(s) i.e. 83  iteration(s).
[INFO 24-04-20 12:18:49.5832 UTC gradient_boosted_trees.cc:333] Final model num-trees:83 valid-loss:0.581309 valid-accuracy:0.868969
[INFO 24-04-20 12:18:49.5857 UTC hyperparameters_optimizer.cc:593] [44/50] Score: -0.581309 / -0.571786 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 64 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.9 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 24-04-20 12:18:49.5860 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:18:49.5861 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:18:49.5926 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:18:49.9228 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.054670 train-accuracy:0.761895 valid-loss:1.111134 valid-accuracy:0.736609
[INFO 24-04-20 12:19:16.7366 UTC gradient_boosted_trees.cc:1592]  num-trees:84 train-loss:0.532153 train-accuracy:0.885501 valid-loss:0.591597 valid-accuracy:0.864542
[INFO 24-04-20 12:19:46.8041 UTC gradient_boosted_trees.cc:1592]  num-trees:175 train-loss:0.477048 train-accuracy:0.896946 valid-loss:0.575477 valid-accuracy:0.866313
[INFO 24-04-20 12:19:55.6225 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.575182
[INFO 24-04-20 12:19:55.6226 UTC gradient_boosted_trees.cc:270] Truncates the model to 172 tree(s) i.e. 172  iteration(s).
[INFO 24-04-20 12:19:55.6230 UTC gradient_boosted_trees.cc:333] Final model num-trees:172 valid-loss:0.575182 valid-accuracy:0.866313
[INFO 24-04-20 12:19:55.6265 UTC hyperparameters_optimizer.cc:593] [45/50] Score: -0.575182 / -0.571786 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 5 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "RANDOM" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 32 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 7 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 12:19:55.6266 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:19:55.6267 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:19:55.6338 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:19:55.7469 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.034381 train-accuracy:0.761895 valid-loss:1.090479 valid-accuracy:0.736609
[INFO 24-04-20 12:20:16.8927 UTC gradient_boosted_trees.cc:1592]  num-trees:190 train-loss:0.571752 train-accuracy:0.870939 valid-loss:0.618687 valid-accuracy:0.860115
[INFO 24-04-20 12:20:29.2130 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.553388 train-accuracy:0.875907 valid-loss:0.612170 valid-accuracy:0.860115
[INFO 24-04-20 12:20:29.2131 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 12:20:29.2131 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.612170 valid-accuracy:0.860115
[INFO 24-04-20 12:20:29.2138 UTC hyperparameters_optimizer.cc:593] [46/50] Score: -0.61217 / -0.571786 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 3 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.1 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 24-04-20 12:20:29.2139 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:20:29.2139 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:20:29.2192 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:20:29.3209 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.084782 train-accuracy:0.761895 valid-loss:1.143113 valid-accuracy:0.736609
[INFO 24-04-20 12:20:46.9769 UTC gradient_boosted_trees.cc:1592]  num-trees:169 train-loss:0.665927 train-accuracy:0.853114 valid-loss:0.700177 valid-accuracy:0.835325
[INFO 24-04-20 12:21:00.6692 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.626406 train-accuracy:0.857059 valid-loss:0.658615 valid-accuracy:0.840637
[INFO 24-04-20 12:21:00.6692 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 12:21:00.6692 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.658615 valid-accuracy:0.840637
[INFO 24-04-20 12:21:00.6700 UTC hyperparameters_optimizer.cc:593] [47/50] Score: -0.658615 / -0.571786 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 4 } } fields { name: "sparse_oblique_normalization" value { categorical: "NONE" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 3 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.5 } }
[INFO 24-04-20 12:21:00.6702 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:21:00.6702 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:21:00.6757 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:21:00.8668 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.078871 train-accuracy:0.761895 valid-loss:1.137038 valid-accuracy:0.736609
[INFO 24-04-20 12:21:17.0580 UTC gradient_boosted_trees.cc:1592]  num-trees:84 train-loss:0.588684 train-accuracy:0.882531 valid-loss:0.664665 valid-accuracy:0.853918
[INFO 24-04-20 12:21:47.2018 UTC gradient_boosted_trees.cc:1592]  num-trees:235 train-loss:0.464404 train-accuracy:0.905323 valid-loss:0.602023 valid-accuracy:0.865427
[INFO 24-04-20 12:22:00.2663 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.435161 train-accuracy:0.912677 valid-loss:0.598654 valid-accuracy:0.865870
[INFO 24-04-20 12:22:00.2663 UTC gradient_boosted_trees.cc:270] Truncates the model to 300 tree(s) i.e. 300  iteration(s).
[INFO 24-04-20 12:22:00.2663 UTC gradient_boosted_trees.cc:333] Final model num-trees:300 valid-loss:0.598654 valid-accuracy:0.865870
[INFO 24-04-20 12:22:00.2780 UTC hyperparameters_optimizer.cc:593] [48/50] Score: -0.598654 / -0.571786 HParams: [INFO 24-04-20 12:22:00.2781 UTC gradient_boosted_trees.cc:544] fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 3 } } fields { name: "sparse_oblique_normalization" value { categorical: "MIN_MAX" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "LOCAL" } } fields { name: "max_depth" value { integer: 8 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.6 } } fields { name: "shrinkage" value { real: 0.02 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "false" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:22:00.2782 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:22:00.2924 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:22:00.5463 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.059373 train-accuracy:0.761895 valid-loss:1.116517 valid-accuracy:0.736609
[INFO 24-04-20 12:22:17.2567 UTC gradient_boosted_trees.cc:1592]  num-trees:65 train-loss:0.594698 train-accuracy:0.865095 valid-loss:0.634110 valid-accuracy:0.852590
[INFO 24-04-20 12:22:47.4207 UTC gradient_boosted_trees.cc:1592]  num-trees:171 train-loss:0.531316 train-accuracy:0.881751 valid-loss:0.593663 valid-accuracy:0.864099
[INFO 24-04-20 12:23:17.5371 UTC gradient_boosted_trees.cc:1592]  num-trees:275 train-loss:0.495416 train-accuracy:0.891053 valid-loss:0.587540 valid-accuracy:0.861000
[INFO 24-04-20 12:23:24.7253 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.487725 train-accuracy:0.892709 valid-loss:0.586623 valid-accuracy:0.862771
[INFO 24-04-20 12:23:24.7253 UTC gradient_boosted_trees.cc:270] Truncates the model to 298 tree(s) i.e. 298  iteration(s).
[INFO 24-04-20 12:23:24.7253 UTC gradient_boosted_trees.cc:333] Final model num-trees:298 valid-loss:0.586586 valid-accuracy:0.862771
[INFO 24-04-20 12:23:24.7279 UTC hyperparameters_optimizer.cc:593] [49/50] Score: -0.586586 / -0.571786 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 3 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "CONTINUOUS" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 1 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 10 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 1 } }
[INFO 24-04-20 12:23:24.7283 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:23:24.7283 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:23:24.7349 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:23:24.9005 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:1.055494 train-accuracy:0.761895 valid-loss:1.112262 valid-accuracy:0.736609
[INFO 24-04-20 12:23:47.5936 UTC gradient_boosted_trees.cc:1592]  num-trees:145 train-loss:0.544730 train-accuracy:0.878342 valid-loss:0.589646 valid-accuracy:0.866755
[INFO 24-04-20 12:24:13.3175 UTC gradient_boosted_trees.cc:1590]  num-trees:300 train-loss:0.494594 train-accuracy:0.889105 valid-loss:0.578382 valid-accuracy:0.870739
[INFO 24-04-20 12:24:13.3175 UTC gradient_boosted_trees.cc:270] Truncates the model to 293 tree(s) i.e. 293  iteration(s).
[INFO 24-04-20 12:24:13.3176 UTC gradient_boosted_trees.cc:333] Final model num-trees:293 valid-loss:0.577675 valid-accuracy:0.871625
[INFO 24-04-20 12:24:13.3200 UTC hyperparameters_optimizer.cc:593] [50/50] Score: -0.577675 / -0.571786 HParams: fields { name: "split_axis" value { categorical: "SPARSE_OBLIQUE" } } fields { name: "sparse_oblique_projection_density_factor" value { real: 1 } } fields { name: "sparse_oblique_normalization" value { categorical: "STANDARD_DEVIATION" } } fields { name: "sparse_oblique_weights" value { categorical: "BINARY" } } fields { name: "categorical_algorithm" value { categorical: "CART" } } fields { name: "growing_strategy" value { categorical: "BEST_FIRST_GLOBAL" } } fields { name: "max_num_nodes" value { integer: 16 } } fields { name: "sampling_method" value { categorical: "RANDOM" } } fields { name: "subsample" value { real: 0.8 } } fields { name: "shrinkage" value { real: 0.05 } } fields { name: "min_examples" value { integer: 5 } } fields { name: "use_hessian_gain" value { categorical: "true" } } fields { name: "num_candidate_attributes_ratio" value { real: 0.9 } }
[INFO 24-04-20 12:24:13.3240 UTC hyperparameters_optimizer.cc:224] Best hyperparameters:
fields {
  name: "split_axis"
  value {
    categorical: "SPARSE_OBLIQUE"
  }
}
fields {
  name: "sparse_oblique_projection_density_factor"
  value {
    real: 2
  }
}
fields {
  name: "sparse_oblique_normalization"
  value {
    categorical: "NONE"
  }
}
fields {
  name: "sparse_oblique_weights"
  value {
    categorical: "BINARY"
  }
}
fields {
  name: "categorical_algorithm"
  value {
    categorical: "RANDOM"
  }
}
fields {
  name: "growing_strategy"
  value {
    categorical: "BEST_FIRST_GLOBAL"
  }
}
fields {
  name: "max_num_nodes"
  value {
    integer: 64
  }
}
fields {
  name: "sampling_method"
  value {
    categorical: "RANDOM"
  }
}
fields {
  name: "subsample"
  value {
    real: 0.9
  }
}
fields {
  name: "shrinkage"
  value {
    real: 0.1
  }
}
fields {
  name: "min_examples"
  value {
    integer: 7
  }
}
fields {
  name: "use_hessian_gain"
  value {
    categorical: "false"
  }
}
fields {
  name: "num_candidate_attributes_ratio"
  value {
    real: 1
  }
}

[INFO 24-04-20 12:24:13.3245 UTC kernel.cc:919] Export model in log directory: /tmpfs/tmp/tmpl269t4qx with prefix 1585dd90b3df4ade
[INFO 24-04-20 12:24:13.3315 UTC kernel.cc:937] Save model in resources
[INFO 24-04-20 12:24:13.3344 UTC abstract_model.cc:881] Model self evaluation:
Task: CLASSIFICATION
Label: __LABEL
Loss (BINOMIAL_LOG_LIKELIHOOD): 0.571786

Accuracy: 0.871182  CI95[W][0 1]
ErrorRate: : 0.128818


Confusion Table:
truth\prediction
      1    2
1  1569   95
2   196  399
Total: 2259


[INFO 24-04-20 12:24:13.3517 UTC kernel.cc:1233] Loading model from path /tmpfs/tmp/tmpl269t4qx/model/ with prefix 1585dd90b3df4ade
[INFO 24-04-20 12:24:13.3755 UTC decision_forest.cc:734] Model loaded with 82 root(s), 7626 node(s), and 14 input feature(s).
[INFO 24-04-20 12:24:13.3755 UTC abstract_model.cc:1344] Engine "GradientBoostedTreesGeneric" built
[INFO 24-04-20 12:24:13.3756 UTC kernel.cc:1061] Use fast generic engine
Model trained in 0:40:46.518024
Compiling model...
Model compiled.
CPU times: user 40min 56s, sys: 3.43 s, total: 41min
Wall time: 40min 47s
<tf_keras.src.callbacks.History at 0x7f39bc270e20>
# Evaluate the model
tuned_model.compile(["accuracy"])
tuned_test_accuracy = tuned_model.evaluate(test_ds, return_dict=True, verbose=0)["accuracy"]
print(f"Test accuracy with the TF-DF hyper-parameter tuner: {tuned_test_accuracy:.4f}")
Test accuracy with the TF-DF hyper-parameter tuner: 0.8741

与之前一样,显示调优日志。

# Display the tuning logs.
tuning_logs = tuned_model.make_inspector().tuning_logs()
tuning_logs.head()

与之前一样,显示最佳超参数。

# Best hyper-parameters.
tuning_logs[tuning_logs.best].iloc[0]
score                                               -0.571786
evaluation_time                                   1821.530222
best                                                     True
split_axis                                     SPARSE_OBLIQUE
sparse_oblique_projection_density_factor                  2.0
sparse_oblique_normalization                             NONE
sparse_oblique_weights                                 BINARY
categorical_algorithm                                  RANDOM
growing_strategy                            BEST_FIRST_GLOBAL
max_num_nodes                                            64.0
sampling_method                                        RANDOM
subsample                                                 0.9
shrinkage                                                 0.1
min_examples                                                7
use_hessian_gain                                        false
num_candidate_attributes_ratio                            1.0
max_depth                                                 NaN
Name: 35, dtype: object

最后,绘制调优过程中模型质量的演变情况

plt.figure(figsize=(10, 5))
plt.plot(tuning_logs["score"], label="current trial")
plt.plot(tuning_logs["score"].cummax(), label="best trial")
plt.xlabel("Tuning step")
plt.ylabel("Tuning score")
plt.legend()
plt.show()

png

使用 Keras Tuner 训练模型(替代方法)

TensorFlow 决策森林基于 Keras 框架,并且与Keras Tuner兼容。

目前,TF-DF TunerKeras Tuner 是互补的。

TF-DF Tuner

  • 自动配置目标。
  • 自动提取验证数据集(如果需要)。
  • 支持模型自我评估(例如,包外评估)。
  • 分布式超参数调优。
  • 试验之间共享数据集访问:TensorFlow 数据集仅读取一次,这可以显著加快小型数据集的调优速度。

Keras Tuner

  • 支持调优预处理参数。
  • 支持超带优化器。
  • 支持自定义目标。

让我们使用 Keras Tuner 调优 TF-DF 模型。

# Install the Keras tuner
!pip install keras-tuner -U -qq
import keras_tuner as kt
%%time

def build_model(hp):
  """Creates a model."""

  model = tfdf.keras.GradientBoostedTreesModel(
      min_examples=hp.Choice("min_examples", [2, 5, 7, 10]),
      categorical_algorithm=hp.Choice("categorical_algorithm", ["CART", "RANDOM"]),
      max_depth=hp.Choice("max_depth", [4, 5, 6, 7]),
      # The keras tuner convert automaticall boolean parameters to integers.
      use_hessian_gain=bool(hp.Choice("use_hessian_gain", [True, False])),
      shrinkage=hp.Choice("shrinkage", [0.02, 0.05, 0.10, 0.15]),
      num_candidate_attributes_ratio=hp.Choice("num_candidate_attributes_ratio", [0.2, 0.5, 0.9, 1.0]),
  )

  # Optimize the model accuracy as computed on the validation dataset.
  model.compile(metrics=["accuracy"])
  return model

keras_tuner = kt.RandomSearch(
    build_model,
    objective="val_accuracy",
    max_trials=50,
    overwrite=True,
    directory="/tmp/keras_tuning")

# Important: The tuning should not be done on the test dataset.

# Extract a validation dataset from the training dataset. The new training
# dataset is called the "sub-training-dataset".

def split_dataset(dataset, test_ratio=0.30):
  """Splits a panda dataframe in two."""
  test_indices = np.random.rand(len(dataset)) < test_ratio
  return dataset[~test_indices], dataset[test_indices]

sub_train_df, sub_valid_df = split_dataset(train_df)
sub_train_ds = tfdf.keras.pd_dataframe_to_tf_dataset(sub_train_df, label="income")
sub_valid_ds = tfdf.keras.pd_dataframe_to_tf_dataset(sub_valid_df, label="income")

# Tune the model
keras_tuner.search(sub_train_ds, validation_data=sub_valid_ds)
Warning: The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.
WARNING:absl:The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.
Use /tmpfs/tmp/tmpln_gjjxu as temporary training directory

Search: Running Trial #1

Value             |Best Value So Far |Hyperparameter
10                |10                |min_examples
CART              |CART              |categorical_algorithm
7                 |7                 |max_depth
1                 |1                 |use_hessian_gain
0.15              |0.15              |shrinkage
0.5               |0.5               |num_candidate_attributes_ratio
[WARNING 24-04-20 12:24:17.3831 UTC gradient_boosted_trees.cc:1840] "goss_alpha" set but "sampling_method" not equal to "GOSS".
[WARNING 24-04-20 12:24:17.3831 UTC gradient_boosted_trees.cc:1851] "goss_beta" set but "sampling_method" not equal to "GOSS".
[WARNING 24-04-20 12:24:17.3831 UTC gradient_boosted_trees.cc:1865] "selective_gradient_boosting_ratio" set but "sampling_method" not equal to "SELGB".
Warning: The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.
WARNING:absl:The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.
Use /tmpfs/tmp/tmpz2tcb0j7 as temporary training directory
[WARNING 24-04-20 12:24:17.8409 UTC gradient_boosted_trees.cc:1840] "goss_alpha" set but "sampling_method" not equal to "GOSS".
[WARNING 24-04-20 12:24:17.8410 UTC gradient_boosted_trees.cc:1851] "goss_beta" set but "sampling_method" not equal to "GOSS".
[WARNING 24-04-20 12:24:17.8410 UTC gradient_boosted_trees.cc:1865] "selective_gradient_boosting_ratio" set but "sampling_method" not equal to "SELGB".

---------------------------------------------------------------------------

FatalTypeError                            Traceback (most recent call last)

File <timed exec>:40


File /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/keras_tuner/src/engine/base_tuner.py:234, in BaseTuner.search(self, *fit_args, **fit_kwargs)
    231         continue
    233     self.on_trial_begin(trial)
--> 234     self._try_run_and_update_trial(trial, *fit_args, **fit_kwargs)
    235     self.on_trial_end(trial)
    236 self.on_search_end()


File /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/keras_tuner/src/engine/base_tuner.py:279, in BaseTuner._try_run_and_update_trial(self, trial, *fit_args, **fit_kwargs)
    277 except Exception as e:
    278     if isinstance(e, errors.FatalError):
--> 279         raise e
    280     if config_module.DEBUG:
    281         # Printing the stacktrace and the error.
    282         traceback.print_exc()


File /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/keras_tuner/src/engine/base_tuner.py:274, in BaseTuner._try_run_and_update_trial(self, trial, *fit_args, **fit_kwargs)
    272 def _try_run_and_update_trial(self, trial, *fit_args, **fit_kwargs):
    273     try:
--> 274         self._run_and_update_trial(trial, *fit_args, **fit_kwargs)
    275         trial.status = trial_module.TrialStatus.COMPLETED
    276         return


File /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/keras_tuner/src/engine/base_tuner.py:239, in BaseTuner._run_and_update_trial(self, trial, *fit_args, **fit_kwargs)
    238 def _run_and_update_trial(self, trial, *fit_args, **fit_kwargs):
--> 239     results = self.run_trial(trial, *fit_args, **fit_kwargs)
    240     if self.oracle.get_trial(trial.trial_id).metrics.exists(
    241         self.oracle.objective.name
    242     ):
    243         # The oracle is updated by calling `self.oracle.update_trial()` in
    244         # `Tuner.run_trial()`. For backward compatibility, we support this
    245         # use case. No further action needed in this case.
    246         warnings.warn(
    247             "The use case of calling "
    248             "`self.oracle.update_trial(trial_id, metrics)` "
   (...)
    254             stacklevel=2,
    255         )


File /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/keras_tuner/src/engine/tuner.py:314, in Tuner.run_trial(self, trial, *args, **kwargs)
    312     callbacks.append(model_checkpoint)
    313     copied_kwargs["callbacks"] = callbacks
--> 314     obj_value = self._build_and_fit_model(trial, *args, **copied_kwargs)
    316     histories.append(obj_value)
    317 return histories


File /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/keras_tuner/src/engine/tuner.py:232, in Tuner._build_and_fit_model(self, trial, *args, **kwargs)
    214 """For AutoKeras to override.
    215 
    216 DO NOT REMOVE this function. AutoKeras overrides the function to tune
   (...)
    229     The fit history.
    230 """
    231 hp = trial.hyperparameters
--> 232 model = self._try_build(hp)
    233 results = self.hypermodel.fit(hp, model, *args, **kwargs)
    235 # Save the build config for model loading later.


File /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/keras_tuner/src/engine/tuner.py:167, in Tuner._try_build(self, hp)
    165 # Stop if `build()` does not return a valid model.
    166 if not isinstance(model, keras.models.Model):
--> 167     raise errors.FatalTypeError(
    168         "Expected the model-building function, or HyperModel.build() "
    169         "to return a valid Keras Model instance. "
    170         f"Received: {model} of type {type(model)}."
    171     )
    172 # Check model size.
    173 size = maybe_compute_model_size(model)


FatalTypeError: Expected the model-building function, or HyperModel.build() to return a valid Keras Model instance. Received: <tensorflow_decision_forests.keras.GradientBoostedTreesModel object at 0x7f39d84d5490> of type <class 'tensorflow_decision_forests.keras.GradientBoostedTreesModel'>.

最佳超参数可以使用get_best_hyperparameters获得

# Tune the model
best_hyper_parameters = keras_tuner.get_best_hyperparameters()[0].values
print("Best hyper-parameters:", keras_tuner.get_best_hyperparameters()[0].values)
Best hyper-parameters: {'min_examples': 10, 'categorical_algorithm': 'CART', 'max_depth': 7, 'use_hessian_gain': 1, 'shrinkage': 0.15, 'num_candidate_attributes_ratio': 0.5}

应使用最佳超参数重新训练模型

%set_cell_height 300
# Train the model
# The keras tuner convert automaticall boolean parameters to integers.
best_hyper_parameters["use_hessian_gain"] = bool(best_hyper_parameters["use_hessian_gain"])
best_model = tfdf.keras.GradientBoostedTreesModel(**best_hyper_parameters)
best_model.fit(train_ds, verbose=2)
<IPython.core.display.Javascript object>
Warning: The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.
WARNING:absl:The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.
Use /tmpfs/tmp/tmp_uzoe05p as temporary training directory
Reading training dataset...
Training tensor examples:
Features: {'age': <tf.Tensor 'data:0' shape=(None,) dtype=int64>, 'workclass': <tf.Tensor 'data_1:0' shape=(None,) dtype=string>, 'fnlwgt': <tf.Tensor 'data_2:0' shape=(None,) dtype=int64>, 'education': <tf.Tensor 'data_3:0' shape=(None,) dtype=string>, 'education_num': <tf.Tensor 'data_4:0' shape=(None,) dtype=int64>, 'marital_status': <tf.Tensor 'data_5:0' shape=(None,) dtype=string>, 'occupation': <tf.Tensor 'data_6:0' shape=(None,) dtype=string>, 'relationship': <tf.Tensor 'data_7:0' shape=(None,) dtype=string>, 'race': <tf.Tensor 'data_8:0' shape=(None,) dtype=string>, 'sex': <tf.Tensor 'data_9:0' shape=(None,) dtype=string>, 'capital_gain': <tf.Tensor 'data_10:0' shape=(None,) dtype=int64>, 'capital_loss': <tf.Tensor 'data_11:0' shape=(None,) dtype=int64>, 'hours_per_week': <tf.Tensor 'data_12:0' shape=(None,) dtype=int64>, 'native_country': <tf.Tensor 'data_13:0' shape=(None,) dtype=string>}
Label: Tensor("data_14:0", shape=(None,), dtype=int64)
Weights: None
Normalized tensor features:
 {'age': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast:0' shape=(None,) dtype=float32>), 'workclass': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_1:0' shape=(None,) dtype=string>), 'fnlwgt': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_1:0' shape=(None,) dtype=float32>), 'education': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_3:0' shape=(None,) dtype=string>), 'education_num': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_2:0' shape=(None,) dtype=float32>), 'marital_status': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_5:0' shape=(None,) dtype=string>), 'occupation': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_6:0' shape=(None,) dtype=string>), 'relationship': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_7:0' shape=(None,) dtype=string>), 'race': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_8:0' shape=(None,) dtype=string>), 'sex': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_9:0' shape=(None,) dtype=string>), 'capital_gain': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_3:0' shape=(None,) dtype=float32>), 'capital_loss': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_4:0' shape=(None,) dtype=float32>), 'hours_per_week': SemanticTensor(semantic=<Semantic.NUMERICAL: 1>, tensor=<tf.Tensor 'Cast_5:0' shape=(None,) dtype=float32>), 'native_country': SemanticTensor(semantic=<Semantic.CATEGORICAL: 2>, tensor=<tf.Tensor 'data_13:0' shape=(None,) dtype=string>)}
[WARNING 24-04-20 12:24:18.3496 UTC gradient_boosted_trees.cc:1840] "goss_alpha" set but "sampling_method" not equal to "GOSS".
[WARNING 24-04-20 12:24:18.3496 UTC gradient_boosted_trees.cc:1851] "goss_beta" set but "sampling_method" not equal to "GOSS".
[WARNING 24-04-20 12:24:18.3497 UTC gradient_boosted_trees.cc:1865] "selective_gradient_boosting_ratio" set but "sampling_method" not equal to "SELGB".
Training dataset read in 0:00:00.394819. Found 22792 examples.
Training model...
[INFO 24-04-20 12:24:18.7612 UTC kernel.cc:771] Start Yggdrasil model training
[INFO 24-04-20 12:24:18.7612 UTC kernel.cc:772] Collect training examples
[INFO 24-04-20 12:24:18.7612 UTC kernel.cc:785] Dataspec guide:
column_guides {
  column_name_pattern: "^__LABEL$"
  type: CATEGORICAL
  categorial {
    min_vocab_frequency: 0
    max_vocab_count: -1
  }
}
default_column_guide {
  categorial {
    max_vocab_count: 2000
  }
  discretized_numerical {
    maximum_num_bins: 255
  }
}
ignore_columns_without_guides: false
detect_numerical_as_discretized_numerical: false

[INFO 24-04-20 12:24:18.7613 UTC kernel.cc:391] Number of batches: 23
[INFO 24-04-20 12:24:18.7613 UTC kernel.cc:392] Number of examples: 22792
[INFO 24-04-20 12:24:18.7693 UTC data_spec_inference.cc:305] 1 item(s) have been pruned (i.e. they are considered out of dictionary) for the column native_country (40 item(s) left) because min_value_count=5 and max_number_of_unique_values=2000
[INFO 24-04-20 12:24:18.7694 UTC data_spec_inference.cc:305] 1 item(s) have been pruned (i.e. they are considered out of dictionary) for the column occupation (13 item(s) left) because min_value_count=5 and max_number_of_unique_values=2000
[INFO 24-04-20 12:24:18.7694 UTC data_spec_inference.cc:305] 1 item(s) have been pruned (i.e. they are considered out of dictionary) for the column workclass (7 item(s) left) because min_value_count=5 and max_number_of_unique_values=2000
[INFO 24-04-20 12:24:18.7756 UTC kernel.cc:792] Training dataset:
Number of records: 22792
Number of columns: 15

Number of columns by type:
    CATEGORICAL: 9 (60%)
    NUMERICAL: 6 (40%)

Columns:

CATEGORICAL: 9 (60%)
    0: "__LABEL" CATEGORICAL integerized vocab-size:3 no-ood-item
    4: "education" CATEGORICAL has-dict vocab-size:17 zero-ood-items most-frequent:"HS-grad" 7340 (32.2043%)
    8: "marital_status" CATEGORICAL has-dict vocab-size:8 zero-ood-items most-frequent:"Married-civ-spouse" 10431 (45.7661%)
    9: "native_country" CATEGORICAL num-nas:407 (1.78571%) has-dict vocab-size:41 num-oods:1 (0.00446728%) most-frequent:"United-States" 20436 (91.2933%)
    10: "occupation" CATEGORICAL num-nas:1260 (5.52826%) has-dict vocab-size:14 num-oods:4 (0.018577%) most-frequent:"Prof-specialty" 2870 (13.329%)
    11: "race" CATEGORICAL has-dict vocab-size:6 zero-ood-items most-frequent:"White" 19467 (85.4115%)
    12: "relationship" CATEGORICAL has-dict vocab-size:7 zero-ood-items most-frequent:"Husband" 9191 (40.3256%)
    13: "sex" CATEGORICAL has-dict vocab-size:3 zero-ood-items most-frequent:"Male" 15165 (66.5365%)
    14: "workclass" CATEGORICAL num-nas:1257 (5.51509%) has-dict vocab-size:8 num-oods:3 (0.0139308%) most-frequent:"Private" 15879 (73.7358%)

NUMERICAL: 6 (40%)
    1: "age" NUMERICAL mean:38.6153 min:17 max:90 sd:13.661
    2: "capital_gain" NUMERICAL mean:1081.9 min:0 max:99999 sd:7509.48
    3: "capital_loss" NUMERICAL mean:87.2806 min:0 max:4356 sd:403.01
    5: "education_num" NUMERICAL mean:10.0927 min:1 max:16 sd:2.56427
    6: "fnlwgt" NUMERICAL mean:189879 min:12285 max:1.4847e+06 sd:106423
    7: "hours_per_week" NUMERICAL mean:40.3955 min:1 max:99 sd:12.249

Terminology:
    nas: Number of non-available (i.e. missing) values.
    ood: Out of dictionary.
    manually-defined: Attribute whose type is manually defined by the user, i.e., the type was not automatically inferred.
    tokenized: The attribute value is obtained through tokenization.
    has-dict: The attribute is attached to a string dictionary e.g. a categorical attribute stored as a string.
    vocab-size: Number of unique values.

[INFO 24-04-20 12:24:18.7756 UTC kernel.cc:808] Configure learner
[WARNING 24-04-20 12:24:18.7758 UTC gradient_boosted_trees.cc:1840] "goss_alpha" set but "sampling_method" not equal to "GOSS".
[WARNING 24-04-20 12:24:18.7758 UTC gradient_boosted_trees.cc:1851] "goss_beta" set but "sampling_method" not equal to "GOSS".
[WARNING 24-04-20 12:24:18.7759 UTC gradient_boosted_trees.cc:1865] "selective_gradient_boosting_ratio" set but "sampling_method" not equal to "SELGB".
[INFO 24-04-20 12:24:18.7759 UTC kernel.cc:822] Training config:
learner: "GRADIENT_BOOSTED_TREES"
features: "^age$"
features: "^capital_gain$"
features: "^capital_loss$"
features: "^education$"
features: "^education_num$"
features: "^fnlwgt$"
features: "^hours_per_week$"
features: "^marital_status$"
features: "^native_country$"
features: "^occupation$"
features: "^race$"
features: "^relationship$"
features: "^sex$"
features: "^workclass$"
label: "^__LABEL$"
task: CLASSIFICATION
random_seed: 123456
metadata {
  framework: "TF Keras"
}
pure_serving_model: false
[yggdrasil_decision_forests.model.gradient_boosted_trees.proto.gradient_boosted_trees_config] {
  num_trees: 300
  decision_tree {
    max_depth: 7
    min_examples: 10
    in_split_min_examples_check: true
    keep_non_leaf_label_distribution: true
    missing_value_policy: GLOBAL_IMPUTATION
    allow_na_conditions: false
    categorical_set_greedy_forward {
      sampling: 0.1
      max_num_items: -1
      min_item_frequency: 1
    }
    growing_strategy_local {
    }
    categorical {
      cart {
      }
    }
    num_candidate_attributes_ratio: 0.5
    axis_aligned_split {
    }
    internal {
      sorting_strategy: PRESORTED
    }
    uplift {
      min_examples_in_treatment: 5
      split_score: KULLBACK_LEIBLER
    }
  }
  shrinkage: 0.15
  loss: DEFAULT
  validation_set_ratio: 0.1
  validation_interval_in_trees: 1
  early_stopping: VALIDATION_LOSS_INCREASE
  early_stopping_num_trees_look_ahead: 30
  l2_regularization: 0
  lambda_loss: 1
  mart {
  }
  adapt_subsample_for_maximum_training_duration: false
  l1_regularization: 0
  use_hessian_gain: true
  l2_regularization_categorical: 1
  stochastic_gradient_boosting {
    ratio: 1
  }
  apply_link_function: true
  compute_permutation_variable_importance: false
  binary_focal_loss_options {
    misprediction_exponent: 2
    positive_sample_coefficient: 0.5
  }
  early_stopping_initial_iteration: 10
}

[INFO 24-04-20 12:24:18.7760 UTC kernel.cc:825] Deployment config:
cache_path: "/tmpfs/tmp/tmp_uzoe05p/working_cache"
num_threads: 32
try_resume_training: true

[INFO 24-04-20 12:24:18.7762 UTC kernel.cc:887] Train model
[INFO 24-04-20 12:24:18.7763 UTC gradient_boosted_trees.cc:544] Default loss set to BINOMIAL_LOG_LIKELIHOOD
[INFO 24-04-20 12:24:18.7763 UTC gradient_boosted_trees.cc:1171] Training gradient boosted tree on 22792 example(s) and 14 feature(s).
[INFO 24-04-20 12:24:18.7824 UTC gradient_boosted_trees.cc:1214] 20533 examples used for training and 2259 examples used for validation
[INFO 24-04-20 12:24:18.8028 UTC gradient_boosted_trees.cc:1590]  num-trees:1 train-loss:0.975468 train-accuracy:0.761895 valid-loss:1.026095 valid-accuracy:0.736609
[INFO 24-04-20 12:24:18.8196 UTC gradient_boosted_trees.cc:1592]  num-trees:2 train-loss:0.897070 train-accuracy:0.761895 valid-loss:0.945305 valid-accuracy:0.736609
[INFO 24-04-20 12:24:20.2681 UTC early_stopping.cc:53] Early stop of the training because the validation loss does not decrease anymore. Best valid-loss: 0.57263
[INFO 24-04-20 12:24:20.2681 UTC gradient_boosted_trees.cc:1629] Create final snapshot of the model at iteration 104
[INFO 24-04-20 12:24:20.2741 UTC gradient_boosted_trees.cc:270] Truncates the model to 75 tree(s) i.e. 75  iteration(s).
[INFO 24-04-20 12:24:20.2744 UTC gradient_boosted_trees.cc:333] Final model num-trees:75 valid-loss:0.572630 valid-accuracy:0.869411
[INFO 24-04-20 12:24:20.2760 UTC kernel.cc:919] Export model in log directory: /tmpfs/tmp/tmp_uzoe05p with prefix b04d9dc7d6754618
[INFO 24-04-20 12:24:20.2801 UTC kernel.cc:937] Save model in resources
[INFO 24-04-20 12:24:20.2839 UTC abstract_model.cc:881] Model self evaluation:
Task: CLASSIFICATION
Label: __LABEL
Loss (BINOMIAL_LOG_LIKELIHOOD): 0.57263

Accuracy: 0.869411  CI95[W][0 1]
ErrorRate: : 0.130589


Confusion Table:
truth\prediction
      1    2
1  1577   87
2   208  387
Total: 2259


[INFO 24-04-20 12:24:20.3022 UTC kernel.cc:1233] Loading model from path /tmpfs/tmp/tmp_uzoe05p/model/ with prefix b04d9dc7d6754618
[INFO 24-04-20 12:24:20.3206 UTC quick_scorer_extended.cc:911] The binary was compiled without AVX2 support, but your CPU supports it. Enable it for faster model inference.
[INFO 24-04-20 12:24:20.3214 UTC kernel.cc:1061] Use fast generic engine
Model trained in 0:00:01.567091
Compiling model...
Model compiled.
<tf_keras.src.callbacks.History at 0x7f37a8625370>

然后,我们可以评估调优后的模型

# Evaluate the model
best_model.compile(["accuracy"])
tuned_test_accuracy = best_model.evaluate(test_ds, return_dict=True, verbose=0)["accuracy"]
print(f"Test accuracy with the Keras Tuner: {tuned_test_accuracy:.4f}")
Test accuracy with the Keras Tuner: 0.8715