检查和调试决策森林模型

在 TensorFlow.org 上查看 在 Google Colab 中运行 在 GitHub 上查看 下载笔记本

在本 Colab 中,您将学习如何直接检查和创建模型的结构。我们假设您熟悉 初学者中级 Colab 中介绍的概念。

在本 Colab 中,您将

  1. 训练一个随机森林模型并以编程方式访问其结构。

  2. 手动创建一个随机森林模型并将其用作经典模型。

设置

# Install TensorFlow Decision Forests.
pip install tensorflow_decision_forests

# Use wurlitzer to show the training logs.
pip install wurlitzer
import os
# Keep using Keras 2
os.environ['TF_USE_LEGACY_KERAS'] = '1'

import tensorflow_decision_forests as tfdf

import numpy as np
import pandas as pd
import tensorflow as tf
import tf_keras
import matplotlib.pyplot as plt
import math
import collections

隐藏的代码单元格限制了 Colab 中的输出高度。

训练一个简单的随机森林

我们像在 初学者 Colab 中一样训练一个随机森林

# Download the dataset
!wget -q https://storage.googleapis.com/download.tensorflow.org/data/palmer_penguins/penguins.csv -O /tmp/penguins.csv

# Load a dataset into a Pandas Dataframe.
dataset_df = pd.read_csv("/tmp/penguins.csv")

# Show the first three examples.
print(dataset_df.head(3))

# Convert the pandas dataframe into a tf dataset.
dataset_tf = tfdf.keras.pd_dataframe_to_tf_dataset(dataset_df, label="species")

# Train the Random Forest
model = tfdf.keras.RandomForestModel(compute_oob_variable_importances=True)
model.fit(x=dataset_tf)
species     island  bill_length_mm  bill_depth_mm  flipper_length_mm  \
0  Adelie  Torgersen            39.1           18.7              181.0   
1  Adelie  Torgersen            39.5           17.4              186.0   
2  Adelie  Torgersen            40.3           18.0              195.0   

   body_mass_g     sex  year  
0       3750.0    male  2007  
1       3800.0  female  2007  
2       3250.0  female  2007  
Warning: The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.
WARNING:absl:The `num_threads` constructor argument is not set and the number of CPU is os.cpu_count()=32 > 32. Setting num_threads to 32. Set num_threads manually to use more than 32 cpus.
Use /tmpfs/tmp/tmpadwizz7x as temporary training directory
Reading training dataset...
Training dataset read in 0:00:03.574049. Found 344 examples.
Training model...
Model trained in 0:00:00.092571
Compiling model...
[INFO 24-04-20 11:24:50.3886 UTC kernel.cc:1233] Loading model from path /tmpfs/tmp/tmpadwizz7x/model/ with prefix 59499fe5fa654879
[INFO 24-04-20 11:24:50.4047 UTC decision_forest.cc:734] Model loaded with 300 root(s), 5080 node(s), and 7 input feature(s).
[INFO 24-04-20 11:24:50.4047 UTC abstract_model.cc:1344] Engine "RandomForestGeneric" built
[INFO 24-04-20 11:24:50.4048 UTC kernel.cc:1061] Use fast generic engine
Model compiled.
<tf_keras.src.callbacks.History at 0x7fb16472dbe0>

请注意模型构造函数中的 compute_oob_variable_importances=True 超参数。此选项在训练期间计算袋外 (OOB) 变量重要性。这是随机森林模型的一种流行的 排列变量重要性

计算 OOB 变量重要性不会影响最终模型,它会减慢大型数据集的训练速度。

检查模型摘要

%set_cell_height 300

model.summary()
<IPython.core.display.Javascript object>
Model: "random_forest_model"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
=================================================================
Total params: 1 (1.00 Byte)
Trainable params: 0 (0.00 Byte)
Non-trainable params: 1 (1.00 Byte)
_________________________________________________________________
Type: "RANDOM_FOREST"
Task: CLASSIFICATION
Label: "__LABEL"

Input Features (7):
    bill_depth_mm
    bill_length_mm
    body_mass_g
    flipper_length_mm
    island
    sex
    year

No weights

Variable Importance: INV_MEAN_MIN_DEPTH:

    1. "flipper_length_mm"  0.440513 ################
    2.    "bill_length_mm"  0.438028 ###############
    3.     "bill_depth_mm"  0.299751 #####
    4.            "island"  0.295079 #####
    5.       "body_mass_g"  0.256534 ##
    6.               "sex"  0.225708 
    7.              "year"  0.224020 

Variable Importance: MEAN_DECREASE_IN_ACCURACY:

    1.    "bill_length_mm"  0.151163 ################
    2.            "island"  0.008721 #
    3.     "bill_depth_mm"  0.000000 
    4.       "body_mass_g"  0.000000 
    5.               "sex"  0.000000 
    6.              "year"  0.000000 
    7. "flipper_length_mm" -0.002907 

Variable Importance: MEAN_DECREASE_IN_AP_1_VS_OTHERS:

    1.    "bill_length_mm"  0.083305 ################
    2.            "island"  0.007664 #
    3. "flipper_length_mm"  0.003400 
    4.     "bill_depth_mm"  0.002741 
    5.       "body_mass_g"  0.000722 
    6.               "sex"  0.000644 
    7.              "year"  0.000000 

Variable Importance: MEAN_DECREASE_IN_AP_2_VS_OTHERS:

    1.    "bill_length_mm"  0.508510 ################
    2.            "island"  0.023487 
    3.     "bill_depth_mm"  0.007744 
    4. "flipper_length_mm"  0.006008 
    5.       "body_mass_g"  0.003017 
    6.               "sex"  0.001537 
    7.              "year" -0.000245 

Variable Importance: MEAN_DECREASE_IN_AP_3_VS_OTHERS:

    1.            "island"  0.002192 ################
    2.    "bill_length_mm"  0.001572 ############
    3.     "bill_depth_mm"  0.000497 #######
    4.               "sex"  0.000000 ####
    5.              "year"  0.000000 ####
    6.       "body_mass_g" -0.000053 ####
    7. "flipper_length_mm" -0.000890 

Variable Importance: MEAN_DECREASE_IN_AUC_1_VS_OTHERS:

    1.    "bill_length_mm"  0.071306 ################
    2.            "island"  0.007299 #
    3. "flipper_length_mm"  0.004506 #
    4.     "bill_depth_mm"  0.002124 
    5.       "body_mass_g"  0.000548 
    6.               "sex"  0.000480 
    7.              "year"  0.000000 

Variable Importance: MEAN_DECREASE_IN_AUC_2_VS_OTHERS:

    1.    "bill_length_mm"  0.108642 ################
    2.            "island"  0.014493 ##
    3.     "bill_depth_mm"  0.007406 #
    4. "flipper_length_mm"  0.005195 
    5.       "body_mass_g"  0.001012 
    6.               "sex"  0.000480 
    7.              "year" -0.000053 

Variable Importance: MEAN_DECREASE_IN_AUC_3_VS_OTHERS:

    1.            "island"  0.002126 ################
    2.    "bill_length_mm"  0.001393 ###########
    3.     "bill_depth_mm"  0.000293 #####
    4.               "sex"  0.000000 ###
    5.              "year"  0.000000 ###
    6.       "body_mass_g" -0.000037 ###
    7. "flipper_length_mm" -0.000550 

Variable Importance: MEAN_DECREASE_IN_PRAUC_1_VS_OTHERS:

    1.    "bill_length_mm"  0.083122 ################
    2.            "island"  0.010887 ##
    3. "flipper_length_mm"  0.003425 
    4.     "bill_depth_mm"  0.002731 
    5.       "body_mass_g"  0.000719 
    6.               "sex"  0.000641 
    7.              "year"  0.000000 

Variable Importance: MEAN_DECREASE_IN_PRAUC_2_VS_OTHERS:

    1.    "bill_length_mm"  0.497611 ################
    2.            "island"  0.024045 
    3.     "bill_depth_mm"  0.007734 
    4. "flipper_length_mm"  0.006017 
    5.       "body_mass_g"  0.003000 
    6.               "sex"  0.001528 
    7.              "year" -0.000243 

Variable Importance: MEAN_DECREASE_IN_PRAUC_3_VS_OTHERS:

    1.            "island"  0.002187 ################
    2.    "bill_length_mm"  0.001568 ############
    3.     "bill_depth_mm"  0.000495 #######
    4.               "sex"  0.000000 ####
    5.              "year"  0.000000 ####
    6.       "body_mass_g" -0.000053 ####
    7. "flipper_length_mm" -0.000886 

Variable Importance: NUM_AS_ROOT:

    1. "flipper_length_mm" 157.000000 ################
    2.    "bill_length_mm" 76.000000 #######
    3.     "bill_depth_mm" 52.000000 #####
    4.            "island" 12.000000 
    5.       "body_mass_g"  3.000000 

Variable Importance: NUM_NODES:

    1.    "bill_length_mm" 778.000000 ################
    2.     "bill_depth_mm" 463.000000 #########
    3. "flipper_length_mm" 414.000000 ########
    4.            "island" 342.000000 ######
    5.       "body_mass_g" 338.000000 ######
    6.               "sex" 36.000000 
    7.              "year" 19.000000 

Variable Importance: SUM_SCORE:

    1.    "bill_length_mm" 36515.793787 ################
    2. "flipper_length_mm" 35120.434174 ###############
    3.            "island" 14669.408395 ######
    4.     "bill_depth_mm" 14515.446617 ######
    5.       "body_mass_g" 3485.330881 #
    6.               "sex" 354.201073 
    7.              "year" 49.737758 



Winner takes all: true
Out-of-bag evaluation: accuracy:0.976744 logloss:0.068949
Number of trees: 300
Total number of nodes: 5080

Number of nodes by tree:
Count: 300 Average: 16.9333 StdDev: 3.10197
Min: 11 Max: 31 Ignored: 0
----------------------------------------------
[ 11, 12)  6   2.00%   2.00% #
[ 12, 13)  0   0.00%   2.00%
[ 13, 14) 46  15.33%  17.33% #####
[ 14, 15)  0   0.00%  17.33%
[ 15, 16) 70  23.33%  40.67% ########
[ 16, 17)  0   0.00%  40.67%
[ 17, 18) 84  28.00%  68.67% ##########
[ 18, 19)  0   0.00%  68.67%
[ 19, 20) 46  15.33%  84.00% #####
[ 20, 21)  0   0.00%  84.00%
[ 21, 22) 30  10.00%  94.00% ####
[ 22, 23)  0   0.00%  94.00%
[ 23, 24) 13   4.33%  98.33% ##
[ 24, 25)  0   0.00%  98.33%
[ 25, 26)  2   0.67%  99.00%
[ 26, 27)  0   0.00%  99.00%
[ 27, 28)  2   0.67%  99.67%
[ 28, 29)  0   0.00%  99.67%
[ 29, 30)  0   0.00%  99.67%
[ 30, 31]  1   0.33% 100.00%

Depth by leafs:
Count: 2690 Average: 3.53271 StdDev: 1.06789
Min: 2 Max: 7 Ignored: 0
----------------------------------------------
[ 2, 3) 545  20.26%  20.26% ######
[ 3, 4) 747  27.77%  48.03% ########
[ 4, 5) 888  33.01%  81.04% ##########
[ 5, 6) 444  16.51%  97.55% #####
[ 6, 7)  62   2.30%  99.85% #
[ 7, 7]   4   0.15% 100.00%

Number of training obs by leaf:
Count: 2690 Average: 38.3643 StdDev: 44.8651
Min: 5 Max: 155 Ignored: 0
----------------------------------------------
[   5,  12) 1474  54.80%  54.80% ##########
[  12,  20)  124   4.61%  59.41% #
[  20,  27)   48   1.78%  61.19%
[  27,  35)   74   2.75%  63.94% #
[  35,  42)   58   2.16%  66.10%
[  42,  50)   85   3.16%  69.26% #
[  50,  57)   96   3.57%  72.83% #
[  57,  65)   87   3.23%  76.06% #
[  65,  72)   49   1.82%  77.88%
[  72,  80)   23   0.86%  78.74%
[  80,  88)   30   1.12%  79.85%
[  88,  95)   23   0.86%  80.71%
[  95, 103)   42   1.56%  82.27%
[ 103, 110)   62   2.30%  84.57%
[ 110, 118)  115   4.28%  88.85% #
[ 118, 125)  115   4.28%  93.12% #
[ 125, 133)   98   3.64%  96.77% #
[ 133, 140)   49   1.82%  98.59%
[ 140, 148)   31   1.15%  99.74%
[ 148, 155]    7   0.26% 100.00%

Attribute in nodes:
    778 : bill_length_mm [NUMERICAL]
    463 : bill_depth_mm [NUMERICAL]
    414 : flipper_length_mm [NUMERICAL]
    342 : island [CATEGORICAL]
    338 : body_mass_g [NUMERICAL]
    36 : sex [CATEGORICAL]
    19 : year [NUMERICAL]

Attribute in nodes with depth <= 0:
    157 : flipper_length_mm [NUMERICAL]
    76 : bill_length_mm [NUMERICAL]
    52 : bill_depth_mm [NUMERICAL]
    12 : island [CATEGORICAL]
    3 : body_mass_g [NUMERICAL]

Attribute in nodes with depth <= 1:
    250 : bill_length_mm [NUMERICAL]
    244 : flipper_length_mm [NUMERICAL]
    183 : bill_depth_mm [NUMERICAL]
    170 : island [CATEGORICAL]
    53 : body_mass_g [NUMERICAL]

Attribute in nodes with depth <= 2:
    462 : bill_length_mm [NUMERICAL]
    320 : flipper_length_mm [NUMERICAL]
    310 : bill_depth_mm [NUMERICAL]
    287 : island [CATEGORICAL]
    162 : body_mass_g [NUMERICAL]
    9 : sex [CATEGORICAL]
    5 : year [NUMERICAL]

Attribute in nodes with depth <= 3:
    669 : bill_length_mm [NUMERICAL]
    410 : bill_depth_mm [NUMERICAL]
    383 : flipper_length_mm [NUMERICAL]
    328 : island [CATEGORICAL]
    286 : body_mass_g [NUMERICAL]
    32 : sex [CATEGORICAL]
    10 : year [NUMERICAL]

Attribute in nodes with depth <= 5:
    778 : bill_length_mm [NUMERICAL]
    462 : bill_depth_mm [NUMERICAL]
    413 : flipper_length_mm [NUMERICAL]
    342 : island [CATEGORICAL]
    338 : body_mass_g [NUMERICAL]
    36 : sex [CATEGORICAL]
    19 : year [NUMERICAL]

Condition type in nodes:
    2012 : HigherCondition
    378 : ContainsBitmapCondition
Condition type in nodes with depth <= 0:
    288 : HigherCondition
    12 : ContainsBitmapCondition
Condition type in nodes with depth <= 1:
    730 : HigherCondition
    170 : ContainsBitmapCondition
Condition type in nodes with depth <= 2:
    1259 : HigherCondition
    296 : ContainsBitmapCondition
Condition type in nodes with depth <= 3:
    1758 : HigherCondition
    360 : ContainsBitmapCondition
Condition type in nodes with depth <= 5:
    2010 : HigherCondition
    378 : ContainsBitmapCondition
Node format: NOT_SET

Training OOB:
    trees: 1, Out-of-bag evaluation: accuracy:0.964286 logloss:1.28727
    trees: 13, Out-of-bag evaluation: accuracy:0.94863 logloss:1.38235
    trees: 29, Out-of-bag evaluation: accuracy:0.963526 logloss:0.698239
    trees: 39, Out-of-bag evaluation: accuracy:0.958824 logloss:0.37345
    trees: 54, Out-of-bag evaluation: accuracy:0.973837 logloss:0.171543
    trees: 72, Out-of-bag evaluation: accuracy:0.97093 logloss:0.171775
    trees: 82, Out-of-bag evaluation: accuracy:0.973837 logloss:0.168111
    trees: 92, Out-of-bag evaluation: accuracy:0.976744 logloss:0.167506
    trees: 113, Out-of-bag evaluation: accuracy:0.976744 logloss:0.170507
    trees: 124, Out-of-bag evaluation: accuracy:0.976744 logloss:0.07406
    trees: 135, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0739305
    trees: 145, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0741686
    trees: 155, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0738562
    trees: 166, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0727146
    trees: 177, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0721128
    trees: 195, Out-of-bag evaluation: accuracy:0.976744 logloss:0.070882
    trees: 205, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0705714
    trees: 216, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0697382
    trees: 231, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0695581
    trees: 244, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0683962
    trees: 255, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0693447
    trees: 267, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0689024
    trees: 279, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0694214
    trees: 296, Out-of-bag evaluation: accuracy:0.976744 logloss:0.0691636
    trees: 300, Out-of-bag evaluation: accuracy:0.976744 logloss:0.068949

请注意名称为 MEAN_DECREASE_IN_* 的多个变量重要性。

绘制模型

接下来,绘制模型。

随机森林是一个大型模型(此模型有 300 棵树和约 5k 个节点;请参阅上面的摘要)。因此,只绘制第一棵树,并将节点限制为深度 3。

tfdf.model_plotter.plot_model_in_colab(model, tree_idx=0, max_depth=3)

检查模型结构

模型结构和元数据可通过 make_inspector() 创建的 **检查器** 获取。

inspector = model.make_inspector()

对于我们的模型,可用的检查器字段是

[field for field in dir(inspector) if not field.startswith("_")]
['MODEL_NAME',
 'dataspec',
 'directory',
 'evaluation',
 'export_to_tensorboard',
 'extract_all_trees',
 'extract_tree',
 'features',
 'file_prefix',
 'header',
 'iterate_on_nodes',
 'label',
 'label_classes',
 'metadata',
 'model_type',
 'num_trees',
 'objective',
 'specialized_header',
 'task',
 'training_logs',
 'tuning_logs',
 'variable_importances',
 'winner_take_all_inference']

请记住查看 API 参考 或使用 ? 获取内置文档。

?inspector.model_type

一些模型元数据

print("Model type:", inspector.model_type())
print("Number of trees:", inspector.num_trees())
print("Objective:", inspector.objective())
print("Input features:", inspector.features())
Model type: RANDOM_FOREST
Number of trees: 300
Objective: Classification(label=__LABEL, class=None, num_classes=3)
Input features: ["bill_depth_mm" (1; #1), "bill_length_mm" (1; #2), "body_mass_g" (1; #3), "flipper_length_mm" (1; #4), "island" (4; #5), "sex" (4; #6), "year" (1; #7)]

evaluate() 是在训练期间计算的模型评估。用于此评估的数据集取决于算法。例如,它可以是验证数据集或袋外数据集。

inspector.evaluation()
Evaluation(num_examples=344, accuracy=0.9767441860465116, loss=0.06894904488784283, rmse=None, ndcg=None, aucs=None, auuc=None, qini=None)

变量重要性是

print(f"Available variable importances:")
for importance in inspector.variable_importances().keys():
  print("\t", importance)
Available variable importances:
     MEAN_DECREASE_IN_PRAUC_3_VS_OTHERS
     MEAN_DECREASE_IN_PRAUC_1_VS_OTHERS
     INV_MEAN_MIN_DEPTH
     MEAN_DECREASE_IN_AUC_1_VS_OTHERS
     MEAN_DECREASE_IN_AP_2_VS_OTHERS
     MEAN_DECREASE_IN_AUC_3_VS_OTHERS
     MEAN_DECREASE_IN_AUC_2_VS_OTHERS
     MEAN_DECREASE_IN_AP_1_VS_OTHERS
     NUM_AS_ROOT
     NUM_NODES
     MEAN_DECREASE_IN_PRAUC_2_VS_OTHERS
     MEAN_DECREASE_IN_ACCURACY
     SUM_SCORE
     MEAN_DECREASE_IN_AP_3_VS_OTHERS

不同的变量重要性具有不同的语义。例如,一个特征的 **平均 AUC 降低** 为 0.05 意味着从训练数据集中删除此特征会降低/损害 AUC 5%。

# Mean decrease in AUC of the class 1 vs the others.
inspector.variable_importances()["MEAN_DECREASE_IN_AUC_1_VS_OTHERS"]
[("bill_length_mm" (1; #2), 0.0713061951754389),
 ("island" (4; #5), 0.007298519736842035),
 ("flipper_length_mm" (1; #4), 0.004505893640351366),
 ("bill_depth_mm" (1; #1), 0.0021244517543865804),
 ("body_mass_g" (1; #3), 0.0005482456140351033),
 ("sex" (4; #6), 0.00047971491228060437),
 ("year" (1; #7), 0.0)]

使用 Matplotlib 绘制检查器中的变量重要性

import matplotlib.pyplot as plt

plt.figure(figsize=(12, 4))

# Mean decrease in AUC of the class 1 vs the others.
variable_importance_metric = "MEAN_DECREASE_IN_AUC_1_VS_OTHERS"
variable_importances = inspector.variable_importances()[variable_importance_metric]

# Extract the feature name and importance values.
#
# `variable_importances` is a list of <feature, importance> tuples.
feature_names = [vi[0].name for vi in variable_importances]
feature_importances = [vi[1] for vi in variable_importances]
# The feature are ordered in decreasing importance value.
feature_ranks = range(len(feature_names))

bar = plt.barh(feature_ranks, feature_importances, label=[str(x) for x in feature_ranks])
plt.yticks(feature_ranks, feature_names)
plt.gca().invert_yaxis()

# TODO: Replace with "plt.bar_label()" when available.
# Label each bar with values
for importance, patch in zip(feature_importances, bar.patches):
  plt.text(patch.get_x() + patch.get_width(), patch.get_y(), f"{importance:.4f}", va="top")

plt.xlabel(variable_importance_metric)
plt.title("Mean decrease in AUC of the class 1 vs the others")
plt.tight_layout()
plt.show()

png

最后,访问实际的树结构

inspector.extract_tree(tree_idx=0)
Tree(root=NonLeafNode(condition=(bill_length_mm >= 43.25; miss=True, score=0.5482327342033386), pos_child=NonLeafNode(condition=(island in ['Biscoe']; miss=True, score=0.6515106558799744), pos_child=NonLeafNode(condition=(bill_depth_mm >= 17.225584030151367; miss=False, score=0.027205035090446472), pos_child=LeafNode(value=ProbabilityValue([0.16666666666666666, 0.0, 0.8333333333333334],n=6.0), idx=7), neg_child=LeafNode(value=ProbabilityValue([0.0, 0.0, 1.0],n=104.0), idx=6), value=ProbabilityValue([0.00909090909090909, 0.0, 0.990909090909091],n=110.0)), neg_child=LeafNode(value=ProbabilityValue([0.0, 1.0, 0.0],n=61.0), idx=5), value=ProbabilityValue([0.005847953216374269, 0.3567251461988304, 0.6374269005847953],n=171.0)), neg_child=NonLeafNode(condition=(bill_depth_mm >= 15.100000381469727; miss=True, score=0.150658518075943), pos_child=NonLeafNode(condition=(flipper_length_mm >= 187.5; miss=True, score=0.036139510571956635), pos_child=LeafNode(value=ProbabilityValue([1.0, 0.0, 0.0],n=104.0), idx=4), neg_child=NonLeafNode(condition=(bill_length_mm >= 42.30000305175781; miss=True, score=0.23430533707141876), pos_child=LeafNode(value=ProbabilityValue([0.0, 1.0, 0.0],n=5.0), idx=3), neg_child=NonLeafNode(condition=(bill_length_mm >= 40.55000305175781; miss=True, score=0.043961383402347565), pos_child=LeafNode(value=ProbabilityValue([0.8, 0.2, 0.0],n=5.0), idx=2), neg_child=LeafNode(value=ProbabilityValue([1.0, 0.0, 0.0],n=53.0), idx=1), value=ProbabilityValue([0.9827586206896551, 0.017241379310344827, 0.0],n=58.0)), value=ProbabilityValue([0.9047619047619048, 0.09523809523809523, 0.0],n=63.0)), value=ProbabilityValue([0.9640718562874252, 0.03592814371257485, 0.0],n=167.0)), neg_child=LeafNode(value=ProbabilityValue([0.0, 0.0, 1.0],n=6.0), idx=0), value=ProbabilityValue([0.930635838150289, 0.03468208092485549, 0.03468208092485549],n=173.0)), value=ProbabilityValue([0.47093023255813954, 0.19476744186046513, 0.33430232558139533],n=344.0)), label_classes=None)

提取树效率不高。如果速度很重要,可以使用 iterate_on_nodes() 方法进行模型检查。此方法是模型所有节点的深度优先前序遍历迭代器。

以下示例计算每个特征的使用次数(这是一种结构变量重要性)。

# number_of_use[F] will be the number of node using feature F in its condition.
number_of_use = collections.defaultdict(lambda: 0)

# Iterate over all the nodes in a Depth First Pre-order traversals.
for node_iter in inspector.iterate_on_nodes():

  if not isinstance(node_iter.node, tfdf.py_tree.node.NonLeafNode):
    # Skip the leaf nodes
    continue

  # Iterate over all the features used in the condition.
  # By default, models are "oblique" i.e. each node tests a single feature.
  for feature in node_iter.node.condition.features():
    number_of_use[feature] += 1

print("Number of condition nodes per features:")
for feature, count in number_of_use.items():
  print("\t", feature.name, ":", count)
Number of condition nodes per features:
     bill_length_mm : 778
     bill_depth_mm : 463
     flipper_length_mm : 414
     island : 342
     body_mass_g : 338
     year : 19
     sex : 36

手动创建模型

在本节中,您将手动创建一个小型随机森林模型。为了使其更易于操作,该模型将只包含一棵简单的树

3 label classes: Red, blue and green.
2 features: f1 (numerical) and f2 (string categorical)

f1>=1.5
    ├─(pos)─ f2 in ["cat","dog"]
    │         ├─(pos)─ value: [0.8, 0.1, 0.1]
    │         └─(neg)─ value: [0.1, 0.8, 0.1]
    └─(neg)─ value: [0.1, 0.1, 0.8]
# Create the model builder
builder = tfdf.builder.RandomForestBuilder(
    path="/tmp/manual_model",
    objective=tfdf.py_tree.objective.ClassificationObjective(
        label="color", classes=["red", "blue", "green"]))

每棵树都逐个添加。

# So alias
Tree = tfdf.py_tree.tree.Tree
SimpleColumnSpec = tfdf.py_tree.dataspec.SimpleColumnSpec
ColumnType = tfdf.py_tree.dataspec.ColumnType
# Nodes
NonLeafNode = tfdf.py_tree.node.NonLeafNode
LeafNode = tfdf.py_tree.node.LeafNode
# Conditions
NumericalHigherThanCondition = tfdf.py_tree.condition.NumericalHigherThanCondition
CategoricalIsInCondition = tfdf.py_tree.condition.CategoricalIsInCondition
# Leaf values
ProbabilityValue = tfdf.py_tree.value.ProbabilityValue

builder.add_tree(
    Tree(
        NonLeafNode(
            condition=NumericalHigherThanCondition(
                feature=SimpleColumnSpec(name="f1", type=ColumnType.NUMERICAL),
                threshold=1.5,
                missing_evaluation=False),
            pos_child=NonLeafNode(
                condition=CategoricalIsInCondition(
                    feature=SimpleColumnSpec(name="f2",type=ColumnType.CATEGORICAL),
                    mask=["cat", "dog"],
                    missing_evaluation=False),
                pos_child=LeafNode(value=ProbabilityValue(probability=[0.8, 0.1, 0.1], num_examples=10)),
                neg_child=LeafNode(value=ProbabilityValue(probability=[0.1, 0.8, 0.1], num_examples=20))),
            neg_child=LeafNode(value=ProbabilityValue(probability=[0.1, 0.1, 0.8], num_examples=30)))))

完成树的写入

builder.close()
[INFO 24-04-20 11:24:54.9480 UTC kernel.cc:1233] Loading model from path /tmp/manual_model/tmp/ with prefix f938aac6d7ed44f5
[INFO 24-04-20 11:24:54.9483 UTC decision_forest.cc:734] Model loaded with 1 root(s), 5 node(s), and 2 input feature(s).
[INFO 24-04-20 11:24:54.9483 UTC kernel.cc:1061] Use fast generic engine
INFO:tensorflow:Assets written to: /tmp/manual_model/assets
INFO:tensorflow:Assets written to: /tmp/manual_model/assets

现在,您可以像常规 Keras 模型一样打开模型,并进行预测

manual_model = tf_keras.models.load_model("/tmp/manual_model")
[INFO 24-04-20 11:24:56.1029 UTC kernel.cc:1233] Loading model from path /tmp/manual_model/assets/ with prefix f938aac6d7ed44f5
[INFO 24-04-20 11:24:56.1032 UTC decision_forest.cc:734] Model loaded with 1 root(s), 5 node(s), and 2 input feature(s).
[INFO 24-04-20 11:24:56.1032 UTC kernel.cc:1061] Use fast generic engine
examples = tf.data.Dataset.from_tensor_slices({
        "f1": [1.0, 2.0, 3.0],
        "f2": ["cat", "cat", "bird"]
    }).batch(2)

predictions = manual_model.predict(examples)

print("predictions:\n",predictions)
2/2 [==============================] - 1s 3ms/step
predictions:
 [[0.1 0.1 0.8]
 [0.8 0.1 0.1]
 [0.1 0.8 0.1]]

访问结构

yggdrasil_model_path = manual_model.yggdrasil_model_path_tensor().numpy().decode("utf-8")
print("yggdrasil_model_path:",yggdrasil_model_path)

inspector = tfdf.inspector.make_inspector(yggdrasil_model_path)
print("Input features:", inspector.features())
yggdrasil_model_path: /tmp/manual_model/assets/
Input features: ["f1" (1; #1), "f2" (4; #2)]

当然,您可以绘制此手动构建的模型

tfdf.model_plotter.plot_model_in_colab(manual_model)