在 TensorFlow.org 上查看 | 在 Google Colab 中运行 | 在 GitHub 上查看 | 下载笔记本 |
本教程使用 Mask R-CNN 对 Mobilenet V2 进行微调,将其作为来自 TensorFlow 模型花园 包 (tensorflow-models) 的主干模型。
模型花园 包含一组使用 TensorFlow 高级 API 实现的最先进模型。这些实现展示了建模的最佳实践,使用户能够充分利用 TensorFlow 进行研究和产品开发。
本教程演示了如何
- 使用 TensorFlow 模型包中的模型。
- 训练/微调预构建的 Mask R-CNN,使用 mobilenet 作为主干模型进行目标检测和实例分割
- 导出训练/微调的 Mask R-CNN 模型
安装必要的依赖项
pip install -U -q "tf-models-official"
pip install -U -q remotezip tqdm opencv-python einops
导入所需的库
import os
import io
import json
import tqdm
import shutil
import pprint
import pathlib
import tempfile
import requests
import collections
import matplotlib
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from PIL import Image
from six import BytesIO
from etils import epath
from IPython import display
from urllib.request import urlopen
2023-11-30 12:05:19.630836: E external/local_xla/xla/stream_executor/cuda/cuda_dnn.cc:9261] Unable to register cuDNN factory: Attempting to register factory for plugin cuDNN when one has already been registered 2023-11-30 12:05:19.630880: E external/local_xla/xla/stream_executor/cuda/cuda_fft.cc:607] Unable to register cuFFT factory: Attempting to register factory for plugin cuFFT when one has already been registered 2023-11-30 12:05:19.632442: E external/local_xla/xla/stream_executor/cuda/cuda_blas.cc:1515] Unable to register cuBLAS factory: Attempting to register factory for plugin cuBLAS when one has already been registered
import orbit
import tensorflow as tf
import tensorflow_models as tfm
import tensorflow_datasets as tfds
from official.core import exp_factory
from official.core import config_definitions as cfg
from official.vision.data import tfrecord_lib
from official.vision.serving import export_saved_model_lib
from official.vision.dataloaders.tf_example_decoder import TfExampleDecoder
from official.vision.utils.object_detection import visualization_utils
from official.vision.ops.preprocess_ops import normalize_image, resize_and_crop_image
from official.vision.data.create_coco_tf_record import coco_annotations_to_lists
pp = pprint.PrettyPrinter(indent=4) # Set Pretty Print Indentation
print(tf.__version__) # Check the version of tensorflow used
%matplotlib inline
2.15.0
下载 LVIS 数据集的子集
LVIS:一个用于大词汇量实例分割的数据集。
--2023-11-30 12:05:23-- https://dl.fbaipublicfiles.com/LVIS/lvis_v1_train.json.zip Resolving dl.fbaipublicfiles.com (dl.fbaipublicfiles.com)... 3.163.189.51, 3.163.189.108, 3.163.189.14, ... Connecting to dl.fbaipublicfiles.com (dl.fbaipublicfiles.com)|3.163.189.51|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 350264821 (334M) [application/zip] Saving to: ‘lvis_v1_train.json.zip’ lvis_v1_train.json. 100%[===================>] 334.04M 295MB/s in 1.1s 2023-11-30 12:05:25 (295 MB/s) - ‘lvis_v1_train.json.zip’ saved [350264821/350264821] --2023-11-30 12:05:34-- https://dl.fbaipublicfiles.com/LVIS/lvis_v1_val.json.zip Resolving dl.fbaipublicfiles.com (dl.fbaipublicfiles.com)... 3.163.189.51, 3.163.189.108, 3.163.189.14, ... Connecting to dl.fbaipublicfiles.com (dl.fbaipublicfiles.com)|3.163.189.51|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 64026968 (61M) [application/zip] Saving to: ‘lvis_v1_val.json.zip’ lvis_v1_val.json.zi 100%[===================>] 61.06M 184MB/s in 0.3s 2023-11-30 12:05:34 (184 MB/s) - ‘lvis_v1_val.json.zip’ saved [64026968/64026968] --2023-11-30 12:05:36-- https://dl.fbaipublicfiles.com/LVIS/lvis_v1_image_info_test_dev.json.zip Resolving dl.fbaipublicfiles.com (dl.fbaipublicfiles.com)... 3.163.189.51, 3.163.189.108, 3.163.189.14, ... Connecting to dl.fbaipublicfiles.com (dl.fbaipublicfiles.com)|3.163.189.51|:443... connected. HTTP request sent, awaiting response... 200 OK Length: 384629 (376K) [application/zip] Saving to: ‘lvis_v1_image_info_test_dev.json.zip’ lvis_v1_image_info_ 100%[===================>] 375.61K --.-KB/s in 0.03s 2023-11-30 12:05:37 (12.3 MB/s) - ‘lvis_v1_image_info_test_dev.json.zip’ saved [384629/384629]
_URLS = {
'train_images': 'http://images.cocodataset.org/zips/train2017.zip',
'validation_images': 'http://images.cocodataset.org/zips/val2017.zip',
'test_images': 'http://images.cocodataset.org/zips/test2017.zip',
}
train_prefix = 'train'
valid_prefix = 'val'
train_annotation_path = './lvis_v1_train.json'
valid_annotation_path = './lvis_v1_val.json'
IMGS_DIR = './lvis_sub_dataset/'
tf_records_dir = './lvis_tfrecords/'
if not os.path.exists(IMGS_DIR):
os.mkdir(IMGS_DIR)
if not os.path.exists(tf_records_dir):
os.mkdir(tf_records_dir)
NUM_CLASSES = 3
category_index = get_category_map(valid_annotation_path, NUM_CLASSES)
category_ids = list(category_index.keys())
# Below helper function are taken from github tensorflow dataset lvis
# https://github.com/tensorflow/datasets/blob/master/tensorflow_datasets/datasets/lvis/lvis_dataset_builder.py
_generate_tf_records(train_prefix,
_URLS['train_images'],
train_annotation_path)
100%|██████████| 2338/2338 [16:14<00:00, 2.40it/s]
_generate_tf_records(valid_prefix,
_URLS['validation_images'],
valid_annotation_path)
100%|██████████| 422/422 [02:56<00:00, 2.40it/s]
为自定义数据集配置 MaskRCNN Resnet FPN COCO 模型
train_data_input_path = './lvis_tfrecords/train*'
valid_data_input_path = './lvis_tfrecords/val*'
test_data_input_path = './lvis_tfrecords/test*'
model_dir = './trained_model/'
export_dir ='./exported_model/'
if not os.path.exists(model_dir):
os.mkdir(model_dir)
在模型花园中,定义模型的一组参数称为配置。模型花园可以通过 工厂 根据一组已知参数创建配置。
使用 retinanet_mobilenet_coco
实验配置,如 tfm.vision.configs.maskrcnn.maskrcnn_mobilenet_coco
所定义。
请在此处查找所有已注册的实验 此处
该配置定义了一个实验,用于训练一个 Mask R-CNN 模型,使用 mobilenet 作为主干模型,使用 FPN 作为解码器。默认配置在 COCO train2017 上进行训练,并在 COCO val2017 上进行评估。
还有其他可用的替代实验,例如 maskrcnn_resnetfpn_coco
、maskrcnn_spinenet_coco
等。可以通过将实验名称参数更改为 get_exp_config
函数来切换到它们。
exp_config = exp_factory.get_exp_config('maskrcnn_mobilenet_coco')
model_ckpt_path = './model_ckpt/'
if not os.path.exists(model_ckpt_path):
os.mkdir(model_ckpt_path)
!gsutil cp gs://tf_model_garden/vision/mobilenet/v2_1.0_float/ckpt-180648.data-00000-of-00001 './model_ckpt/'
!gsutil cp gs://tf_model_garden/vision/mobilenet/v2_1.0_float/ckpt-180648.index './model_ckpt/'
Copying gs://tf_model_garden/vision/mobilenet/v2_1.0_float/ckpt-180648.data-00000-of-00001... Operation completed over 1 objects/26.9 MiB. Copying gs://tf_model_garden/vision/mobilenet/v2_1.0_float/ckpt-180648.index... Operation completed over 1 objects/7.5 KiB.
调整模型和数据集配置,使其适用于自定义数据集。
BATCH_SIZE = 8
HEIGHT, WIDTH = 256, 256
IMG_SHAPE = [HEIGHT, WIDTH, 3]
# Backbone Config
exp_config.task.annotation_file = None
exp_config.task.freeze_backbone = True
exp_config.task.init_checkpoint = "./model_ckpt/ckpt-180648"
exp_config.task.init_checkpoint_modules = "backbone"
# Model Config
exp_config.task.model.num_classes = NUM_CLASSES + 1
exp_config.task.model.input_size = IMG_SHAPE
# Training Data Config
exp_config.task.train_data.input_path = train_data_input_path
exp_config.task.train_data.dtype = 'float32'
exp_config.task.train_data.global_batch_size = BATCH_SIZE
exp_config.task.train_data.shuffle_buffer_size = 64
exp_config.task.train_data.parser.aug_scale_max = 1.0
exp_config.task.train_data.parser.aug_scale_min = 1.0
# Validation Data Config
exp_config.task.validation_data.input_path = valid_data_input_path
exp_config.task.validation_data.dtype = 'float32'
exp_config.task.validation_data.global_batch_size = BATCH_SIZE
调整训练器配置。
logical_device_names = [logical_device.name for logical_device in tf.config.list_logical_devices()]
if 'GPU' in ''.join(logical_device_names):
print('This may be broken in Colab.')
device = 'GPU'
elif 'TPU' in ''.join(logical_device_names):
print('This may be broken in Colab.')
device = 'TPU'
else:
print('Running on CPU is slow, so only train for a few steps.')
device = 'CPU'
train_steps = 2000
exp_config.trainer.steps_per_loop = 200 # steps_per_loop = num_of_training_examples // train_batch_size
exp_config.trainer.summary_interval = 200
exp_config.trainer.checkpoint_interval = 200
exp_config.trainer.validation_interval = 200
exp_config.trainer.validation_steps = 200 # validation_steps = num_of_validation_examples // eval_batch_size
exp_config.trainer.train_steps = train_steps
exp_config.trainer.optimizer_config.warmup.linear.warmup_steps = 200
exp_config.trainer.optimizer_config.learning_rate.type = 'cosine'
exp_config.trainer.optimizer_config.learning_rate.cosine.decay_steps = train_steps
exp_config.trainer.optimizer_config.learning_rate.cosine.initial_learning_rate = 0.07
exp_config.trainer.optimizer_config.warmup.linear.warmup_learning_rate = 0.05
This may be broken in Colab.
打印修改后的配置。
pp.pprint(exp_config.as_dict())
display.Javascript("google.colab.output.setIframeHeight('500px');")
{ 'runtime': { 'all_reduce_alg': None, 'batchnorm_spatial_persistent': False, 'dataset_num_private_threads': None, 'default_shard_dim': -1, 'distribution_strategy': 'mirrored', 'enable_xla': False, 'gpu_thread_mode': None, 'loss_scale': None, 'mixed_precision_dtype': 'bfloat16', 'num_cores_per_replica': 1, 'num_gpus': 0, 'num_packs': 1, 'per_gpu_thread_count': 0, 'run_eagerly': False, 'task_index': -1, 'tpu': None, 'tpu_enable_xla_dynamic_padder': None, 'use_tpu_mp_strategy': False, 'worker_hosts': None}, 'task': { 'allow_image_summary': False, 'allowed_mask_class_ids': None, 'annotation_file': None, 'differential_privacy_config': None, 'freeze_backbone': True, 'init_checkpoint': './model_ckpt/ckpt-180648', 'init_checkpoint_modules': 'backbone', 'losses': { 'class_weights': None, 'frcnn_box_weight': 1.0, 'frcnn_class_loss_top_k_percent': 1.0, 'frcnn_class_use_binary_cross_entropy': False, 'frcnn_class_weight': 1.0, 'frcnn_huber_loss_delta': 1.0, 'l2_weight_decay': 4e-05, 'loss_weight': 1.0, 'mask_weight': 1.0, 'rpn_box_weight': 1.0, 'rpn_huber_loss_delta': 0.1111111111111111, 'rpn_score_weight': 1.0}, 'model': { 'anchor': { 'anchor_size': 3, 'aspect_ratios': [0.5, 1.0, 2.0], 'num_scales': 1}, 'backbone': { 'mobilenet': { 'filter_size_scale': 1.0, 'model_id': 'MobileNetV2', 'output_intermediate_endpoints': False, 'output_stride': None, 'stochastic_depth_drop_rate': 0.0}, 'type': 'mobilenet'}, 'decoder': { 'fpn': { 'fusion_type': 'sum', 'num_filters': 128, 'use_keras_layer': False, 'use_separable_conv': True}, 'type': 'fpn'}, 'detection_generator': { 'apply_nms': True, 'max_num_detections': 100, 'nms_iou_threshold': 0.5, 'nms_version': 'v2', 'pre_nms_score_threshold': 0.05, 'pre_nms_top_k': 5000, 'soft_nms_sigma': None, 'use_cpu_nms': False, 'use_sigmoid_probability': False}, 'detection_head': { 'cascade_class_ensemble': False, 'class_agnostic_bbox_pred': False, 'fc_dims': 512, 'num_convs': 4, 'num_fcs': 1, 'num_filters': 128, 'use_separable_conv': True}, 'include_mask': True, 'input_size': [256, 256, 3], 'mask_head': { 'class_agnostic': False, 'num_convs': 4, 'num_filters': 128, 'upsample_factor': 2, 'use_separable_conv': True}, 'mask_roi_aligner': { 'crop_size': 14, 'sample_offset': 0.5}, 'mask_sampler': {'num_sampled_masks': 128}, 'max_level': 6, 'min_level': 3, 'norm_activation': { 'activation': 'relu6', 'norm_epsilon': 0.001, 'norm_momentum': 0.99, 'use_sync_bn': True}, 'num_classes': 4, 'outer_boxes_scale': 1.0, 'roi_aligner': { 'crop_size': 7, 'sample_offset': 0.5}, 'roi_generator': { 'nms_iou_threshold': 0.7, 'num_proposals': 1000, 'pre_nms_min_size_threshold': 0.0, 'pre_nms_score_threshold': 0.0, 'pre_nms_top_k': 2000, 'test_nms_iou_threshold': 0.7, 'test_num_proposals': 1000, 'test_pre_nms_min_size_threshold': 0.0, 'test_pre_nms_score_threshold': 0.0, 'test_pre_nms_top_k': 1000, 'use_batched_nms': False}, 'roi_sampler': { 'background_iou_high_threshold': 0.5, 'background_iou_low_threshold': 0.0, 'cascade_iou_thresholds': None, 'foreground_fraction': 0.25, 'foreground_iou_threshold': 0.5, 'mix_gt_boxes': True, 'num_sampled_rois': 512}, 'rpn_head': { 'num_convs': 1, 'num_filters': 128, 'use_separable_conv': True} }, 'name': None, 'per_category_metrics': False, 'train_data': { 'apply_tf_data_service_before_batching': False, 'autotune_algorithm': None, 'block_length': 1, 'cache': False, 'cycle_length': None, 'decoder': { 'simple_decoder': { 'attribute_names': [ ], 'mask_binarize_threshold': None, 'regenerate_source_id': False}, 'type': 'simple_decoder'}, 'deterministic': None, 'drop_remainder': True, 'dtype': 'float32', 'enable_shared_tf_data_service_between_parallel_trainers': False, 'enable_tf_data_service': False, 'file_type': 'tfrecord', 'global_batch_size': 8, 'input_path': './lvis_tfrecords/train*', 'is_training': True, 'num_examples': -1, 'parser': { 'aug_rand_hflip': True, 'aug_rand_vflip': False, 'aug_scale_max': 1.0, 'aug_scale_min': 1.0, 'aug_type': None, 'mask_crop_size': 112, 'match_threshold': 0.5, 'max_num_instances': 100, 'num_channels': 3, 'pad': True, 'rpn_batch_size_per_im': 256, 'rpn_fg_fraction': 0.5, 'rpn_match_threshold': 0.7, 'rpn_unmatched_threshold': 0.3, 'skip_crowd_during_training': True, 'unmatched_threshold': 0.5}, 'prefetch_buffer_size': None, 'seed': None, 'sharding': True, 'shuffle_buffer_size': 64, 'tf_data_service_address': None, 'tf_data_service_job_name': None, 'tfds_as_supervised': False, 'tfds_data_dir': '', 'tfds_name': '', 'tfds_skip_decoding_feature': '', 'tfds_split': '', 'trainer_id': None, 'weights': None}, 'use_approx_instance_metrics': False, 'use_coco_metrics': True, 'use_wod_metrics': False, 'validation_data': { 'apply_tf_data_service_before_batching': False, 'autotune_algorithm': None, 'block_length': 1, 'cache': False, 'cycle_length': None, 'decoder': { 'simple_decoder': { 'attribute_names': [ ], 'mask_binarize_threshold': None, 'regenerate_source_id': False}, 'type': 'simple_decoder'}, 'deterministic': None, 'drop_remainder': False, 'dtype': 'float32', 'enable_shared_tf_data_service_between_parallel_trainers': False, 'enable_tf_data_service': False, 'file_type': 'tfrecord', 'global_batch_size': 8, 'input_path': './lvis_tfrecords/val*', 'is_training': False, 'num_examples': -1, 'parser': { 'aug_rand_hflip': False, 'aug_rand_vflip': False, 'aug_scale_max': 1.0, 'aug_scale_min': 1.0, 'aug_type': None, 'mask_crop_size': 112, 'match_threshold': 0.5, 'max_num_instances': 100, 'num_channels': 3, 'pad': True, 'rpn_batch_size_per_im': 256, 'rpn_fg_fraction': 0.5, 'rpn_match_threshold': 0.7, 'rpn_unmatched_threshold': 0.3, 'skip_crowd_during_training': True, 'unmatched_threshold': 0.5}, 'prefetch_buffer_size': None, 'seed': None, 'sharding': True, 'shuffle_buffer_size': 10000, 'tf_data_service_address': None, 'tf_data_service_job_name': None, 'tfds_as_supervised': False, 'tfds_data_dir': '', 'tfds_name': '', 'tfds_skip_decoding_feature': '', 'tfds_split': '', 'trainer_id': None, 'weights': None} }, 'trainer': { 'allow_tpu_summary': False, 'best_checkpoint_eval_metric': '', 'best_checkpoint_export_subdir': '', 'best_checkpoint_metric_comp': 'higher', 'checkpoint_interval': 200, 'continuous_eval_timeout': 3600, 'eval_tf_function': True, 'eval_tf_while_loop': False, 'loss_upper_bound': 1000000.0, 'max_to_keep': 5, 'optimizer_config': { 'ema': None, 'learning_rate': { 'cosine': { 'alpha': 0.0, 'decay_steps': 2000, 'initial_learning_rate': 0.07, 'name': 'CosineDecay', 'offset': 0}, 'type': 'cosine'}, 'optimizer': { 'sgd': { 'clipnorm': None, 'clipvalue': None, 'decay': 0.0, 'global_clipnorm': None, 'momentum': 0.9, 'name': 'SGD', 'nesterov': False}, 'type': 'sgd'}, 'warmup': { 'linear': { 'name': 'linear', 'warmup_learning_rate': 0.05, 'warmup_steps': 200}, 'type': 'linear'} }, 'preemption_on_demand_checkpoint': True, 'recovery_begin_steps': 0, 'recovery_max_trials': 0, 'steps_per_loop': 200, 'summary_interval': 200, 'train_steps': 2000, 'train_tf_function': True, 'train_tf_while_loop': True, 'validation_interval': 200, 'validation_steps': 200, 'validation_summary_subdir': 'validation'} } <IPython.core.display.Javascript object>
设置分布式策略。
# Setting up the Strategy
if exp_config.runtime.mixed_precision_dtype == tf.float16:
tf.keras.mixed_precision.set_global_policy('mixed_float16')
if 'GPU' in ''.join(logical_device_names):
distribution_strategy = tf.distribute.MirroredStrategy()
elif 'TPU' in ''.join(logical_device_names):
tf.tpu.experimental.initialize_tpu_system()
tpu = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='/device:TPU_SYSTEM:0')
distribution_strategy = tf.distribute.experimental.TPUStrategy(tpu)
else:
print('Warning: this will be really slow.')
distribution_strategy = tf.distribute.OneDeviceStrategy(logical_device_names[0])
print("Done")
INFO:tensorflow:Using MirroredStrategy with devices ('/job:localhost/replica:0/task:0/device:GPU:0', '/job:localhost/replica:0/task:0/device:GPU:1', '/job:localhost/replica:0/task:0/device:GPU:2', '/job:localhost/replica:0/task:0/device:GPU:3') Done
从 config_definitions.TaskConfig
创建 Task
对象 (tfm.core.base_task.Task
)。
该 Task
对象包含构建数据集、构建模型以及运行训练和评估所需的所有方法。这些方法由 tfm.core.train_lib.run_experiment
驱动。
with distribution_strategy.scope():
task = tfm.core.task_factory.get_task(exp_config.task, logging_dir=model_dir)
可视化一批数据。
for images, labels in task.build_inputs(exp_config.task.train_data).take(1):
print()
print(f'images.shape: {str(images.shape):16} images.dtype: {images.dtype!r}')
print(f'labels.keys: {labels.keys()}')
WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/util/deprecation.py:660: calling map_fn_v2 (from tensorflow.python.ops.map_fn) with dtype is deprecated and will be removed in a future version. Instructions for updating: Use fn_output_signature instead WARNING: All log messages before absl::InitializeLog() is called are written to STDERR W0000 00:00:1701347149.948159 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -56 } dim { size: -42 } dim { size: -43 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -3 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -3 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -3 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } } images.shape: (8, 256, 256, 3) images.dtype: tf.float32 labels.keys: dict_keys(['anchor_boxes', 'image_info', 'rpn_score_targets', 'rpn_box_targets', 'gt_boxes', 'gt_classes', 'gt_outer_boxes', 'gt_masks'])
创建类别索引字典,将标签映射到相应的标签名称。
tf_ex_decoder = TfExampleDecoder(include_mask=True)
用于可视化 TFRecords 结果的辅助函数。
使用 visualization_utils
中的 visualize_boxes_and_labels_on_image_array
在图像上绘制边界框。
def show_batch(raw_records):
plt.figure(figsize=(20, 20))
use_normalized_coordinates=True
min_score_thresh = 0.30
for i, serialized_example in enumerate(raw_records):
plt.subplot(1, 3, i + 1)
decoded_tensors = tf_ex_decoder.decode(serialized_example)
image = decoded_tensors['image'].numpy().astype('uint8')
scores = np.ones(shape=(len(decoded_tensors['groundtruth_boxes'])))
# print(decoded_tensors['groundtruth_instance_masks'].numpy().shape)
# print(decoded_tensors.keys())
visualization_utils.visualize_boxes_and_labels_on_image_array(
image,
decoded_tensors['groundtruth_boxes'].numpy(),
decoded_tensors['groundtruth_classes'].numpy().astype('int'),
scores,
category_index=category_index,
use_normalized_coordinates=use_normalized_coordinates,
min_score_thresh=min_score_thresh,
instance_masks=decoded_tensors['groundtruth_instance_masks'].numpy().astype('uint8'),
line_thickness=4)
plt.imshow(image)
plt.axis("off")
plt.title(f"Image-{i+1}")
plt.show()
训练数据的可视化。
边界框检测包含三个部分。
- 检测到的对象的类别标签。
- 预测边界框与真实边界框之间的匹配百分比。
- 实例分割掩码。
buffer_size = 100
num_of_examples = 3
train_tfrecords = tf.io.gfile.glob(exp_config.task.train_data.input_path)
raw_records = tf.data.TFRecordDataset(train_tfrecords).shuffle(buffer_size=buffer_size).take(num_of_examples)
show_batch(raw_records)
训练和评估。
我们遵循 COCO 挑战传统,根据 mAP(平均平均精度)评估目标检测的准确性。请查看 此处,详细了解如何进行检测任务的评估指标。
IoU:定义为预测边界框与真实边界框的交集面积除以并集面积。
model, eval_logs = tfm.core.train_lib.run_experiment(
distribution_strategy=distribution_strategy,
task=task,
mode='train_and_eval',
params=exp_config,
model_dir=model_dir,
run_post_eval=True)
INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). INFO:tensorflow:Reduce to /job:localhost/replica:0/task:0/device:CPU:0 then broadcast to ('/job:localhost/replica:0/task:0/device:CPU:0',). WARNING:tensorflow:`tf.keras.layers.experimental.SyncBatchNormalization` endpoint is deprecated and will be removed in a future release. Please use `tf.keras.layers.BatchNormalization` with parameter `synchronized` set to True. /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/keras/src/engine/functional.py:642: UserWarning: Input dict contained keys ['6'] which did not match any model input. They will be ignored by the model. inputs = self._flatten_to_reference_inputs(inputs) WARNING:tensorflow:`tf.keras.layers.experimental.SyncBatchNormalization` endpoint is deprecated and will be removed in a future release. Please use `tf.keras.layers.BatchNormalization` with parameter `synchronized` set to True. /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/keras/src/initializers/initializers.py:120: UserWarning: The initializer VarianceScaling is unseeded and being called multiple times, which will return identical values each time (even if the initializer is unseeded). Please update your code to provide a seed to the initializer, or avoid using the same initializer instance more than once. warnings.warn( loading annotations into memory... Done (t=0.01s) creating index... index created! restoring or initializing model... INFO:tensorflow:Customized initialization is done through the passed `init_fn`. INFO:tensorflow:Customized initialization is done through the passed `init_fn`. train | step: 0 | training until step 200... W0000 00:00:1701347174.666189 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -56 } dim { size: -42 } dim { size: -43 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -3 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -3 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -3 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } } INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 101 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 101 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 1 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 101 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 INFO:tensorflow:Collective all_reduce tensors: 101 all_reduces, num_devices = 4, group_size = 4, implementation = CommunicationImplementation.NCCL, num_packs = 1 train | step: 200 | steps/sec: 1.3 | output: {'frcnn_box_loss': 0.31850263, 'frcnn_cls_loss': 0.05660701, 'learning_rate': 0.06828698, 'mask_loss': 0.5251324, 'model_loss': 1.0341916, 'rpn_box_loss': 0.0608424, 'rpn_score_loss': 0.073107146, 'total_loss': 1.3348999, 'training_loss': 1.3348999} saved checkpoint to ./trained_model/ckpt-200. eval | step: 200 | running 200 steps of evaluation... W0000 00:00:1701347326.414129 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -5 } dim { size: -6 } dim { size: -7 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } } creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=1.55s). Accumulating evaluation results... DONE (t=0.37s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.003 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.018 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.004 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.010 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.009 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.027 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.049 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.007 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.061 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.096 Running per image evaluation... Evaluate annotation type *segm* DONE (t=1.77s). Accumulating evaluation results... DONE (t=0.36s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.002 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.013 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.001 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.010 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.008 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.024 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.036 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.002 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.021 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.099 eval | step: 200 | steps/sec: 2.5 | eval time: 80.1 sec | output: {'AP': 0.0034739533, 'AP50': 0.01818383, 'AP75': 0.000105925246, 'APl': 0.009990587, 'APm': 0.0038059496, 'APs': 0.00014011688, 'ARl': 0.096254684, 'ARm': 0.060511984, 'ARmax1': 0.008508347, 'ARmax10': 0.026843267, 'ARmax100': 0.04902959, 'ARs': 0.0065315315, 'mask_AP': 0.0021072333, 'mask_AP50': 0.012642865, 'mask_AP75': 1.1583788e-05, 'mask_APl': 0.010214079, 'mask_APm': 0.001238946, 'mask_APs': 5.1088673e-06, 'mask_ARl': 0.09868914, 'mask_ARm': 0.021187363, 'mask_ARmax1': 0.008023694, 'mask_ARmax10': 0.02381474, 'mask_ARmax100': 0.035661805, 'mask_ARs': 0.0015765766, 'steps_per_second': 2.49587810524514, 'validation_loss': 0.0} train | step: 200 | training until step 400... train | step: 400 | steps/sec: 1.7 | output: {'frcnn_box_loss': 0.3148728, 'frcnn_cls_loss': 0.04683144, 'learning_rate': 0.06331559, 'mask_loss': 0.41505823, 'model_loss': 0.8509541, 'rpn_box_loss': 0.054795396, 'rpn_score_loss': 0.019396221, 'total_loss': 1.1508584, 'training_loss': 1.1508584} saved checkpoint to ./trained_model/ckpt-400. eval | step: 400 | running 200 steps of evaluation... W0000 00:00:1701347440.748884 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -5 } dim { size: -6 } dim { size: -7 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } } creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=0.96s). Accumulating evaluation results... DONE (t=0.31s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.038 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.109 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.018 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.001 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.023 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.104 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.049 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.074 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.077 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.005 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.055 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.201 Running per image evaluation... Evaluate annotation type *segm* DONE (t=1.08s). Accumulating evaluation results... DONE (t=0.30s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.026 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.086 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.003 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.012 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.076 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.036 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.051 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.052 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.024 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.153 eval | step: 400 | steps/sec: 4.5 | eval time: 44.7 sec | output: {'AP': 0.037587434, 'AP50': 0.1090748, 'AP75': 0.018366594, 'APl': 0.10382032, 'APm': 0.022636896, 'APs': 0.0011642236, 'ARl': 0.20149812, 'ARm': 0.054738563, 'ARmax1': 0.04948842, 'ARmax10': 0.07442111, 'ARmax100': 0.07727517, 'ARs': 0.0054054055, 'mask_AP': 0.025703182, 'mask_AP50': 0.08565975, 'mask_AP75': 0.0030623602, 'mask_APl': 0.07599234, 'mask_APm': 0.012238867, 'mask_APs': 9.593982e-07, 'mask_ARl': 0.15299626, 'mask_ARm': 0.02369281, 'mask_ARmax1': 0.0364028, 'mask_ARmax10': 0.050511576, 'mask_ARmax100': 0.051857837, 'mask_ARs': 0.00022522523, 'steps_per_second': 4.477373324644756, 'validation_loss': 0.0} train | step: 400 | training until step 600... train | step: 600 | steps/sec: 2.5 | output: {'frcnn_box_loss': 0.27767265, 'frcnn_cls_loss': 0.049189795, 'learning_rate': 0.055572484, 'mask_loss': 0.39033934, 'model_loss': 0.7880812, 'rpn_box_loss': 0.051621474, 'rpn_score_loss': 0.019257905, 'total_loss': 1.0869627, 'training_loss': 1.0869627} saved checkpoint to ./trained_model/ckpt-600. eval | step: 600 | running 200 steps of evaluation... W0000 00:00:1701347519.556857 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -5 } dim { size: -6 } dim { size: -7 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } } creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=1.53s). Accumulating evaluation results... DONE (t=0.34s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.058 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.147 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.035 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.003 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.035 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.161 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.067 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.094 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.108 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.027 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.099 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.244 Running per image evaluation... Evaluate annotation type *segm* DONE (t=1.71s). Accumulating evaluation results... DONE (t=0.33s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.029 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.099 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.005 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.010 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.098 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.041 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.052 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.054 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.001 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.030 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.155 eval | step: 600 | steps/sec: 4.2 | eval time: 47.9 sec | output: {'AP': 0.057559177, 'AP50': 0.14743358, 'AP75': 0.034844287, 'APl': 0.1611763, 'APm': 0.035119582, 'APs': 0.0034293495, 'ARl': 0.24419476, 'ARm': 0.09869281, 'ARmax1': 0.0665136, 'ARmax10': 0.0941388, 'ARmax100': 0.10835528, 'ARs': 0.026576577, 'mask_AP': 0.028755136, 'mask_AP50': 0.0986329, 'mask_AP75': 0.00467551, 'mask_APl': 0.09832131, 'mask_APm': 0.010138089, 'mask_APs': 1.7697794e-06, 'mask_ARl': 0.15505618, 'mask_ARm': 0.030337691, 'mask_ARmax1': 0.040624514, 'mask_ARmax10': 0.052256178, 'mask_ARmax100': 0.05403324, 'mask_ARs': 0.0009009009, 'steps_per_second': 4.171504081290655, 'validation_loss': 0.0} train | step: 600 | training until step 800... train | step: 800 | steps/sec: 2.4 | output: {'frcnn_box_loss': 0.28230885, 'frcnn_cls_loss': 0.043198194, 'learning_rate': 0.045815594, 'mask_loss': 0.38323456, 'model_loss': 0.77104104, 'rpn_box_loss': 0.046326794, 'rpn_score_loss': 0.015972756, 'total_loss': 1.0689586, 'training_loss': 1.0689586} saved checkpoint to ./trained_model/ckpt-800. eval | step: 800 | running 200 steps of evaluation... W0000 00:00:1701347601.529665 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -5 } dim { size: -6 } dim { size: -7 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } } creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=1.01s). Accumulating evaluation results... DONE (t=0.32s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.063 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.147 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.046 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.004 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.037 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.177 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.072 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.097 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.103 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.015 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.078 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.256 Running per image evaluation... Evaluate annotation type *segm* DONE (t=1.14s). Accumulating evaluation results... DONE (t=0.30s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.045 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.124 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.017 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.018 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.136 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.053 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.064 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.065 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.001 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.030 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.192 eval | step: 800 | steps/sec: 4.4 | eval time: 45.0 sec | output: {'AP': 0.063469686, 'AP50': 0.1473477, 'AP75': 0.045820855, 'APl': 0.17694354, 'APm': 0.03674903, 'APs': 0.003920865, 'ARl': 0.25561798, 'ARm': 0.07761438, 'ARmax1': 0.07167474, 'ARmax10': 0.09676898, 'ARmax100': 0.10253096, 'ARs': 0.014639639, 'mask_AP': 0.04488069, 'mask_AP50': 0.12370826, 'mask_AP75': 0.0165427, 'mask_APl': 0.1360923, 'mask_APm': 0.017513687, 'mask_APs': 5.2146588e-05, 'mask_ARl': 0.19232209, 'mask_ARm': 0.029575163, 'mask_ARmax1': 0.053419493, 'mask_ARmax10': 0.064243406, 'mask_ARmax100': 0.06532041, 'mask_ARs': 0.0011261262, 'steps_per_second': 4.4475057268487275, 'validation_loss': 0.0} train | step: 800 | training until step 1000... train | step: 1000 | steps/sec: 2.5 | output: {'frcnn_box_loss': 0.26871693, 'frcnn_cls_loss': 0.04368285, 'learning_rate': 0.034999996, 'mask_loss': 0.38002, 'model_loss': 0.7526051, 'rpn_box_loss': 0.044981632, 'rpn_score_loss': 0.015203744, 'total_loss': 1.0497146, 'training_loss': 1.0497146} saved checkpoint to ./trained_model/ckpt-1000. eval | step: 1000 | running 200 steps of evaluation... W0000 00:00:1701347680.528202 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -5 } dim { size: -6 } dim { size: -7 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } } creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=0.98s). Accumulating evaluation results... DONE (t=0.30s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.078 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.165 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.065 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.010 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.051 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.205 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.083 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.107 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.110 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.019 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.088 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.267 Running per image evaluation... Evaluate annotation type *segm* DONE (t=1.05s). Accumulating evaluation results... DONE (t=0.30s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.046 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.129 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.017 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.017 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.143 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.055 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.064 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.065 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.001 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.030 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.190 eval | step: 1000 | steps/sec: 4.4 | eval time: 45.9 sec | output: {'AP': 0.078015566, 'AP50': 0.16489986, 'AP75': 0.06506885, 'APl': 0.20505275, 'APm': 0.0508199, 'APs': 0.009842132, 'ARl': 0.26666668, 'ARm': 0.0875817, 'ARmax1': 0.08303716, 'ARmax10': 0.10705439, 'ARmax100': 0.11001615, 'ARs': 0.018693693, 'mask_AP': 0.045874245, 'mask_AP50': 0.12868273, 'mask_AP75': 0.016570596, 'mask_APl': 0.14324915, 'mask_APm': 0.017211707, 'mask_APs': 9.338933e-05, 'mask_ARl': 0.18988764, 'mask_ARm': 0.030392157, 'mask_ARmax1': 0.0547119, 'mask_ARmax10': 0.0638126, 'mask_ARmax100': 0.06483576, 'mask_ARs': 0.0009009009, 'steps_per_second': 4.3583434846159985, 'validation_loss': 0.0} train | step: 1000 | training until step 1200... train | step: 1200 | steps/sec: 2.5 | output: {'frcnn_box_loss': 0.24772172, 'frcnn_cls_loss': 0.0436343, 'learning_rate': 0.024184398, 'mask_loss': 0.36858365, 'model_loss': 0.72140527, 'rpn_box_loss': 0.045137476, 'rpn_score_loss': 0.016328312, 'total_loss': 1.0178626, 'training_loss': 1.0178626} saved checkpoint to ./trained_model/ckpt-1200. eval | step: 1200 | running 200 steps of evaluation... W0000 00:00:1701347760.342535 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -5 } dim { size: -6 } dim { size: -7 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } } creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=1.15s). Accumulating evaluation results... DONE (t=0.31s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.084 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.176 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.069 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.010 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.056 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.219 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.090 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.114 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.124 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.035 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.110 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.277 Running per image evaluation... Evaluate annotation type *segm* DONE (t=1.28s). Accumulating evaluation results... DONE (t=0.31s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.048 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.125 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.024 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.016 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.153 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.059 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.067 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.068 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.002 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.037 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.196 eval | step: 1200 | steps/sec: 4.3 | eval time: 46.4 sec | output: {'AP': 0.08426202, 'AP50': 0.17574485, 'AP75': 0.06948364, 'APl': 0.21902785, 'APm': 0.0561062, 'APs': 0.010037346, 'ARl': 0.27734083, 'ARm': 0.10996732, 'ARmax1': 0.0897382, 'ARmax10': 0.114347786, 'ARmax100': 0.12382544, 'ARs': 0.03536036, 'mask_AP': 0.04775647, 'mask_AP50': 0.12510313, 'mask_AP75': 0.023735445, 'mask_APl': 0.15327115, 'mask_APm': 0.015975025, 'mask_APs': 9.356999e-05, 'mask_ARl': 0.19606742, 'mask_ARm': 0.036764707, 'mask_ARmax1': 0.05893583, 'mask_ARmax10': 0.06712107, 'mask_ARmax100': 0.068467334, 'mask_ARs': 0.0018018018, 'steps_per_second': 4.310460102047628, 'validation_loss': 0.0} train | step: 1200 | training until step 1400... train | step: 1400 | steps/sec: 2.5 | output: {'frcnn_box_loss': 0.23599713, 'frcnn_cls_loss': 0.041378804, 'learning_rate': 0.014427517, 'mask_loss': 0.35429612, 'model_loss': 0.68914723, 'rpn_box_loss': 0.042537488, 'rpn_score_loss': 0.014937655, 'total_loss': 0.98513216, 'training_loss': 0.98513216} saved checkpoint to ./trained_model/ckpt-1400. eval | step: 1400 | running 200 steps of evaluation... W0000 00:00:1701347840.710868 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -5 } dim { size: -6 } dim { size: -7 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } } creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=1.00s). Accumulating evaluation results... DONE (t=0.30s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.088 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.177 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.075 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.011 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.059 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.226 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.091 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.115 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.122 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.029 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.103 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.282 Running per image evaluation... Evaluate annotation type *segm* DONE (t=1.09s). Accumulating evaluation results... DONE (t=0.29s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.051 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.133 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.027 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.019 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.156 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.060 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.070 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.071 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.002 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.036 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.203 eval | step: 1400 | steps/sec: 4.5 | eval time: 44.5 sec | output: {'AP': 0.087541394, 'AP50': 0.1765836, 'AP75': 0.074927665, 'APl': 0.22625497, 'APm': 0.05886792, 'APs': 0.011434166, 'ARl': 0.28220972, 'ARm': 0.10310458, 'ARmax1': 0.09084545, 'ARmax10': 0.11534733, 'ARmax100': 0.12186322, 'ARs': 0.029279279, 'mask_AP': 0.050579414, 'mask_AP50': 0.13304058, 'mask_AP75': 0.027463775, 'mask_APl': 0.15557747, 'mask_APm': 0.018948099, 'mask_APs': 0.00015400951, 'mask_ARl': 0.20262173, 'mask_ARm': 0.036111113, 'mask_ARmax1': 0.05988153, 'mask_ARmax10': 0.070113085, 'mask_ARmax100': 0.07059774, 'mask_ARs': 0.0018018018, 'steps_per_second': 4.490972982132935, 'validation_loss': 0.0} train | step: 1400 | training until step 1600... train | step: 1600 | steps/sec: 2.5 | output: {'frcnn_box_loss': 0.2448898, 'frcnn_cls_loss': 0.040846318, 'learning_rate': 0.006684403, 'mask_loss': 0.3572018, 'model_loss': 0.69579756, 'rpn_box_loss': 0.038723875, 'rpn_score_loss': 0.014135833, 'total_loss': 0.99148893, 'training_loss': 0.99148893} saved checkpoint to ./trained_model/ckpt-1600. eval | step: 1600 | running 200 steps of evaluation... W0000 00:00:1701347919.382529 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -5 } dim { size: -6 } dim { size: -7 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } } creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=1.00s). Accumulating evaluation results... DONE (t=0.29s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.089 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.175 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.081 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.014 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.057 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.232 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.093 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.118 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.124 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.034 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.099 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.288 Running per image evaluation... Evaluate annotation type *segm* DONE (t=1.08s). Accumulating evaluation results... DONE (t=0.28s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.054 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.136 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.030 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.021 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.168 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.063 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.074 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.075 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.003 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.041 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.212 eval | step: 1600 | steps/sec: 4.4 | eval time: 45.6 sec | output: {'AP': 0.08937628, 'AP50': 0.17525133, 'AP75': 0.0808516, 'APl': 0.2315524, 'APm': 0.057085045, 'APs': 0.014369107, 'ARl': 0.28820226, 'ARm': 0.09918301, 'ARmax1': 0.09332256, 'ARmax10': 0.11814755, 'ARmax100': 0.12353258, 'ARs': 0.03400901, 'mask_AP': 0.053880908, 'mask_AP50': 0.1363149, 'mask_AP75': 0.03003062, 'mask_APl': 0.16768122, 'mask_APm': 0.021485755, 'mask_APs': 0.0002800922, 'mask_ARl': 0.21161048, 'mask_ARm': 0.040849674, 'mask_ARmax1': 0.063327946, 'mask_ARmax10': 0.07399031, 'mask_ARmax100': 0.07495961, 'mask_ARs': 0.0027027028, 'steps_per_second': 4.384812711815325, 'validation_loss': 0.0} train | step: 1600 | training until step 1800... train | step: 1800 | steps/sec: 2.5 | output: {'frcnn_box_loss': 0.23585029, 'frcnn_cls_loss': 0.039750163, 'learning_rate': 0.0017130232, 'mask_loss': 0.35994247, 'model_loss': 0.6895491, 'rpn_box_loss': 0.040137492, 'rpn_score_loss': 0.013868618, 'total_loss': 0.9850925, 'training_loss': 0.9850925} saved checkpoint to ./trained_model/ckpt-1800. eval | step: 1800 | running 200 steps of evaluation... W0000 00:00:1701347999.044772 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -5 } dim { size: -6 } dim { size: -7 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } } creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=1.04s). Accumulating evaluation results... DONE (t=0.30s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.089 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.177 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.085 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.012 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.058 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.230 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.092 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.117 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.123 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.034 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.102 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.282 Running per image evaluation... Evaluate annotation type *segm* DONE (t=1.12s). Accumulating evaluation results... DONE (t=0.29s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.051 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.133 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.025 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.019 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.159 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.060 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.069 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.070 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.003 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.036 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.200 eval | step: 1800 | steps/sec: 4.5 | eval time: 44.7 sec | output: {'AP': 0.08882947, 'AP50': 0.1769001, 'AP75': 0.084709905, 'APl': 0.23017395, 'APm': 0.05795139, 'APs': 0.012462094, 'ARl': 0.282397, 'ARm': 0.10163399, 'ARmax1': 0.09213786, 'ARmax10': 0.11690899, 'ARmax100': 0.122886375, 'ARs': 0.03445946, 'mask_AP': 0.050573327, 'mask_AP50': 0.13258772, 'mask_AP75': 0.025201378, 'mask_APl': 0.15921223, 'mask_APm': 0.019294621, 'mask_APs': 0.00025428535, 'mask_ARl': 0.20018727, 'mask_ARm': 0.03627451, 'mask_ARmax1': 0.06015078, 'mask_ARmax10': 0.06919763, 'mask_ARmax100': 0.07022078, 'mask_ARs': 0.002927928, 'steps_per_second': 4.474347551876668, 'validation_loss': 0.0} train | step: 1800 | training until step 2000... train | step: 2000 | steps/sec: 2.5 | output: {'frcnn_box_loss': 0.22732982, 'frcnn_cls_loss': 0.04367072, 'learning_rate': 0.0, 'mask_loss': 0.35671493, 'model_loss': 0.68381965, 'rpn_box_loss': 0.040140744, 'rpn_score_loss': 0.01596347, 'total_loss': 0.9793183, 'training_loss': 0.9793183} saved checkpoint to ./trained_model/ckpt-2000. eval | step: 2000 | running 200 steps of evaluation... W0000 00:00:1701348077.624909 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -5 } dim { size: -6 } dim { size: -7 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } } creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=1.05s). Accumulating evaluation results... DONE (t=0.30s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.091 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.178 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.086 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.013 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.062 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.233 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.093 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.119 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.125 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.035 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.103 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.286 Running per image evaluation... Evaluate annotation type *segm* DONE (t=1.12s). Accumulating evaluation results... DONE (t=0.29s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.053 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.136 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.028 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.022 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.164 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.062 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.072 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.073 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.003 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.040 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.207 eval | step: 2000 | steps/sec: 4.4 | eval time: 45.7 sec | output: {'AP': 0.09090912, 'AP50': 0.17810935, 'AP75': 0.08558971, 'APl': 0.23334582, 'APm': 0.0617902, 'APs': 0.013224964, 'ARl': 0.2863296, 'ARm': 0.10294118, 'ARmax1': 0.09337641, 'ARmax10': 0.11895531, 'ARmax100': 0.124663435, 'ARs': 0.035135135, 'mask_AP': 0.053071458, 'mask_AP50': 0.13569556, 'mask_AP75': 0.028363172, 'mask_APl': 0.16439752, 'mask_APm': 0.022396944, 'mask_APs': 0.00038678324, 'mask_ARl': 0.20692883, 'mask_ARm': 0.039542485, 'mask_ARmax1': 0.062250942, 'mask_ARmax10': 0.0724825, 'mask_ARmax100': 0.073236406, 'mask_ARs': 0.002927928, 'steps_per_second': 4.3735250426509005, 'validation_loss': 0.0} eval | step: 2000 | running 200 steps of evaluation... W0000 00:00:1701348123.440153 8938 op_level_cost_estimator.cc:699] Error in PredictCost() for the op: op: "CropAndResize" attr { key: "T" value { type: DT_FLOAT } } attr { key: "extrapolation_value" value { f: 0 } } attr { key: "method" value { s: "bilinear" } } inputs { dtype: DT_FLOAT shape { dim { size: -5 } dim { size: -6 } dim { size: -7 } dim { size: 1 } } } inputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 4 } } } inputs { dtype: DT_INT32 shape { dim { size: -2 } } } inputs { dtype: DT_INT32 shape { dim { size: 2 } } value { dtype: DT_INT32 tensor_shape { dim { size: 2 } } int_val: 112 } } device { type: "CPU" vendor: "GenuineIntel" model: "111" frequency: 2199 num_cores: 32 environment { key: "cpu_instruction_set" value: "AVX SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2" } environment { key: "eigen" value: "3.4.90" } l1_cache_size: 32768 l2_cache_size: 262144 l3_cache_size: 57671680 memory_size: 268435456 } outputs { dtype: DT_FLOAT shape { dim { size: -2 } dim { size: 112 } dim { size: 112 } dim { size: 1 } } } creating index... index created! Running per image evaluation... Evaluate annotation type *bbox* DONE (t=1.01s). Accumulating evaluation results... DONE (t=0.29s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.091 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.178 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.086 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.013 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.062 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.233 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.093 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.119 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.125 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.035 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.103 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.286 Running per image evaluation... Evaluate annotation type *segm* DONE (t=1.10s). Accumulating evaluation results... DONE (t=0.30s). Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.053 Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.136 Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.028 Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.000 Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.022 Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.164 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.062 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.072 Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.073 Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.003 Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.040 Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.207 eval | step: 2000 | steps/sec: 4.4 | eval time: 45.8 sec | output: {'AP': 0.09090912, 'AP50': 0.17810935, 'AP75': 0.08558971, 'APl': 0.23334582, 'APm': 0.0617902, 'APs': 0.013224964, 'ARl': 0.2863296, 'ARm': 0.10294118, 'ARmax1': 0.09337641, 'ARmax10': 0.11895531, 'ARmax100': 0.124663435, 'ARs': 0.035135135, 'mask_AP': 0.053071458, 'mask_AP50': 0.13569556, 'mask_AP75': 0.028363172, 'mask_APl': 0.16439752, 'mask_APm': 0.022396944, 'mask_APs': 0.00038678324, 'mask_ARl': 0.20692883, 'mask_ARm': 0.039542485, 'mask_ARmax1': 0.062250942, 'mask_ARmax10': 0.0724825, 'mask_ARmax100': 0.073236406, 'mask_ARs': 0.002927928, 'steps_per_second': 4.370002598316903, 'validation_loss': 0.0}
在 TensorBoard 中加载日志。
%load_ext tensorboard
%tensorboard --logdir "./trained_model"
保存和导出训练后的模型。
由 train_lib.run_experiment
返回的 keras.Model
对象期望数据由数据集加载器使用 preprocess_ops.normalize_image(image, offset=MEAN_RGB, scale=STDDEV_RGB)
中相同的均值和方差统计信息进行归一化。此导出函数处理这些细节,因此您可以传递 tf.uint8
图像并获得正确的结果。
export_saved_model_lib.export_inference_graph(
input_type='image_tensor',
batch_size=1,
input_image_size=[HEIGHT, WIDTH],
params=exp_config,
checkpoint_path=tf.train.latest_checkpoint(model_dir),
export_dir=export_dir)
/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/keras/src/engine/functional.py:642: UserWarning: Input dict contained keys ['6'] which did not match any model input. They will be ignored by the model. inputs = self._flatten_to_reference_inputs(inputs) WARNING:tensorflow:Skipping full serialization of Keras layer <official.vision.modeling.maskrcnn_model.MaskRCNNModel object at 0x7f90444a1e50>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <official.vision.modeling.maskrcnn_model.MaskRCNNModel object at 0x7f90444a1e50>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f9371926460>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f9371926460>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f902c4d7250>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f902c4d7250>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f90c84cc850>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f90c84cc850>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f92cd278250>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f92cd278250>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f90443add00>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f90443add00>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f90445fe4c0>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f90445fe4c0>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f902c505d00>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <keras.src.layers.merging.add.Add object at 0x7f902c505d00>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <official.vision.modeling.layers.detection_generator.DetectionGenerator object at 0x7f90c0603310>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <official.vision.modeling.layers.detection_generator.DetectionGenerator object at 0x7f90c0603310>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <official.vision.modeling.layers.mask_sampler.MaskSampler object at 0x7f9044492a60>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <official.vision.modeling.layers.mask_sampler.MaskSampler object at 0x7f9044492a60>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <official.vision.modeling.layers.roi_sampler.ROISampler object at 0x7f902c2afee0>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <official.vision.modeling.layers.roi_sampler.ROISampler object at 0x7f902c2afee0>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <official.vision.modeling.layers.box_sampler.BoxSampler object at 0x7f90c0615220>, because it is not built. WARNING:tensorflow:Skipping full serialization of Keras layer <official.vision.modeling.layers.box_sampler.BoxSampler object at 0x7f90c0615220>, because it is not built. INFO:tensorflow:Assets written to: ./exported_model/assets INFO:tensorflow:Assets written to: ./exported_model/assets
从训练后的模型进行推理。
def load_image_into_numpy_array(path):
"""Load an image from file into a numpy array.
Puts image into numpy array to feed into tensorflow graph.
Note that by convention we put it into a numpy array with shape
(height, width, channels), where channels=3 for RGB.
Args:
path: the file path to the image
Returns:
uint8 numpy array with shape (img_height, img_width, 3)
"""
image = None
if(path.startswith('http')):
response = urlopen(path)
image_data = response.read()
image_data = BytesIO(image_data)
image = Image.open(image_data)
else:
image_data = tf.io.gfile.GFile(path, 'rb').read()
image = Image.open(BytesIO(image_data))
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(1, im_height, im_width, 3)).astype(np.uint8)
def build_inputs_for_object_detection(image, input_image_size):
"""Builds Object Detection model inputs for serving."""
image, _ = resize_and_crop_image(
image,
input_image_size,
padded_size=input_image_size,
aug_scale_min=1.0,
aug_scale_max=1.0)
return image
可视化测试数据。
num_of_examples = 3
test_tfrecords = tf.io.gfile.glob('./lvis_tfrecords/val*')
test_ds = tf.data.TFRecordDataset(test_tfrecords).take(num_of_examples)
show_batch(test_ds)
导入 SavedModel。
imported = tf.saved_model.load(export_dir)
model_fn = imported.signatures['serving_default']
WARNING:absl:Importing a function (__inference_internal_grad_fn_419718) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416667) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415362) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414651) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416415) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416739) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418449) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418179) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417081) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418368) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419556) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419097) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414750) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419124) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417927) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418674) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416847) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418899) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415020) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414399) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418197) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418476) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416775) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415272) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416685) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416289) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417990) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417117) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416073) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419430) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414372) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417522) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415776) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419385) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417171) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417396) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417279) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418188) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413499) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416181) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416019) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418044) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413949) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416343) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413760) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417324) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415344) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416235) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417846) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415308) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415902) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414291) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418773) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416280) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415092) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417567) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413679) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418962) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413661) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415200) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414786) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416010) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413985) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417954) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414354) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416703) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414516) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419349) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416091) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417297) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419646) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415830) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414435) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415263) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419493) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418620) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419439) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417261) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417873) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417828) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413976) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419601) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416100) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419079) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414885) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416118) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415479) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419484) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419088) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415146) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417801) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417153) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414147) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414957) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417270) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416694) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413805) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417882) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416316) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417450) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416514) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419304) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414552) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413787) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416568) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417108) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415326) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419358) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417945) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414156) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414462) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418008) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415452) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419070) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418107) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417243) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416046) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416559) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413580) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414300) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419673) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414255) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415758) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413967) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414795) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414687) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416307) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416469) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414741) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418422) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414192) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415938) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414030) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415560) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415038) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415380) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418548) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414228) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416928) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418872) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417423) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417711) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413850) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416748) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418494) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419052) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417837) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417180) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419565) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416640) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417675) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416919) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417342) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414723) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414408) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416226) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415056) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414597) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415983) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418485) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415686) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416649) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415173) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418719) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414876) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417918) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416028) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415866) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414660) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415893) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418305) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419214) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413589) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418062) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419232) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417693) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419421) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418350) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417549) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415884) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414111) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417756) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415821) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418881) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413625) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413859) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417405) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417072) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417639) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419511) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415209) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418278) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416631) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418683) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414084) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416451) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418935) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418566) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413634) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419277) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417000) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416460) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416397) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418224) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415929) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415992) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417513) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415677) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415137) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417864) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419007) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413877) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414867) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417666) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415515) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416262) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417684) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414804) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419196) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419268) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419295) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416163) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416802) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418026) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414453) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419250) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415488) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415416) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417486) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415920) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418242) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418647) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415182) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415587) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413643) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413454) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415425) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419655) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419520) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414903) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418359) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415083) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413733) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419403) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417468) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418377) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414129) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417090) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418845) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415839) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415164) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416271) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415524) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414381) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417144) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416658) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414849) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419583) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417036) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419151) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418791) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419241) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417216) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413940) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416055) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414489) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414093) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414102) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417900) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415947) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414219) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417045) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414012) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415875) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418116) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414939) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413544) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419457) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418611) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414993) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419547) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414696) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413688) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417333) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414615) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417702) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419034) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418584) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415731) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416001) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418170) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418953) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413841) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413706) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414588) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418593) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418665) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419205) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416523) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415767) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417414) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414759) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415398) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416433) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413607) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418971) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417603) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413562) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417558) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416829) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413535) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415245) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418125) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419367) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419412) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419259) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414336) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416478) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416325) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413652) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413517) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418854) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417459) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416550) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415281) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413814) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419691) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416208) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414543) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414039) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414165) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415911) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417999) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414309) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415722) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414975) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414948) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419628) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415299) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415011) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416424) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416532) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417855) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416154) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416064) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415749) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415542) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417378) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419133) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414966) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417225) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419106) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419016) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414570) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414840) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418656) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415353) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415434) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415128) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413481) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418386) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414858) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415065) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419286) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419142) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418728) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416910) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413445) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418458) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417315) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416406) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417936) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419700) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414057) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417621) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416883) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416856) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414003) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413958) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418251) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416199) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414120) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417432) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417810) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416352) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416361) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417018) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415074) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414579) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416784) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414327) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416811) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415668) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413715) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416145) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414624) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416964) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416676) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416082) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418746) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414561) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414066) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419736) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419727) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419376) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414534) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419169) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415002) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419025) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418332) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418233) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416370) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416793) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414669) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413526) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415110) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416613) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414831) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413571) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419187) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413778) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417198) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418926) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414021) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415254) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418629) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419331) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419637) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418143) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417747) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415803) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416172) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417387) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414525) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416901) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419619) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418269) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417720) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414237) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415389) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416109) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415974) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415335) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418989) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419160) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416127) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417909) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417774) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414363) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419313) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414210) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414345) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418800) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417819) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418890) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415659) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413616) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418692) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416541) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417972) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415857) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417630) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415704) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414642) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415569) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416982) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414714) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413751) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413904) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416298) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416991) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418755) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414282) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417540) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415506) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418944) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418530) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418260) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418287) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419178) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415578) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417009) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413868) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415155) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418467) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415218) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415236) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418053) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419061) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414732) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414930) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419529) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415119) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413886) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414633) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416892) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416037) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416487) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414417) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414201) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417207) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415596) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414912) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415794) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416244) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416766) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419322) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418431) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413796) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418521) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414606) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415461) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417234) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415695) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417963) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415632) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414984) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417792) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415407) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414075) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416388) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413508) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419745) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418206) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414822) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414768) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417585) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419448) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419340) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417135) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418215) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417126) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414507) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416874) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418098) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413769) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413931) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414471) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419115) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414813) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414246) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417531) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413436) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417369) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416721) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416379) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417504) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418512) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415533) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414921) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417477) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414498) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418836) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419043) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415227) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415317) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416217) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413553) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418827) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413913) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413922) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419592) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417783) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416973) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418395) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417648) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415290) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418557) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414894) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415614) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413823) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417594) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419538) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415623) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417612) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414138) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419475) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417360) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415650) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418908) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418071) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416622) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416190) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418035) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416712) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418503) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418152) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416586) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419610) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417162) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419682) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418413) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413895) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414777) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418080) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413670) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418980) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416838) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416595) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415497) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413490) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417099) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418764) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417063) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415812) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416730) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415605) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417306) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416334) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414678) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415101) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413472) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415371) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414048) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419664) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416955) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416757) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418314) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417657) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415191) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417495) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418917) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418539) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418161) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418863) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414183) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416505) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418737) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417738) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418134) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415551) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414390) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414264) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417288) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415740) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419502) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418323) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418296) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416577) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415443) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413463) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418638) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415029) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418701) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417441) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417252) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417189) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416136) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414480) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418017) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417576) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418782) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418404) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413832) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416253) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416937) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415713) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415785) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418440) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419574) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417891) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416946) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413598) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414174) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418089) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419394) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417765) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418809) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414426) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413994) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418341) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416442) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418818) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418602) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417981) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417054) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413697) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414705) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417729) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416604) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419466) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418575) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419223) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413742) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418998) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416496) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415965) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_418710) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415848) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_419709) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415956) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417351) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415047) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416865) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414273) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_416820) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415641) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_417027) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414318) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_414444) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_413724) with ops with unsaved custom gradients. Will likely fail if a gradient is requested. WARNING:absl:Importing a function (__inference_internal_grad_fn_415470) with ops with unsaved custom gradients. Will likely fail if a gradient is requested.
可视化预测。
def reframe_image_corners_relative_to_boxes(boxes):
"""Reframe the image corners ([0, 0, 1, 1]) to be relative to boxes.
The local coordinate frame of each box is assumed to be relative to
its own for corners.
Args:
boxes: A float tensor of [num_boxes, 4] of (ymin, xmin, ymax, xmax)
coordinates in relative coordinate space of each bounding box.
Returns:
reframed_boxes: Reframes boxes with same shape as input.
"""
ymin, xmin, ymax, xmax = (boxes[:, 0], boxes[:, 1], boxes[:, 2], boxes[:, 3])
height = tf.maximum(ymax - ymin, 1e-4)
width = tf.maximum(xmax - xmin, 1e-4)
ymin_out = (0 - ymin) / height
xmin_out = (0 - xmin) / width
ymax_out = (1 - ymin) / height
xmax_out = (1 - xmin) / width
return tf.stack([ymin_out, xmin_out, ymax_out, xmax_out], axis=1)
def reframe_box_masks_to_image_masks(box_masks, boxes, image_height,
image_width, resize_method='bilinear'):
"""Transforms the box masks back to full image masks.
Embeds masks in bounding boxes of larger masks whose shapes correspond to
image shape.
Args:
box_masks: A tensor of size [num_masks, mask_height, mask_width].
boxes: A tf.float32 tensor of size [num_masks, 4] containing the box
corners. Row i contains [ymin, xmin, ymax, xmax] of the box
corresponding to mask i. Note that the box corners are in
normalized coordinates.
image_height: Image height. The output mask will have the same height as
the image height.
image_width: Image width. The output mask will have the same width as the
image width.
resize_method: The resize method, either 'bilinear' or 'nearest'. Note that
'bilinear' is only respected if box_masks is a float.
Returns:
A tensor of size [num_masks, image_height, image_width] with the same dtype
as `box_masks`.
"""
resize_method = 'nearest' if box_masks.dtype == tf.uint8 else resize_method
# TODO(rathodv): Make this a public function.
def reframe_box_masks_to_image_masks_default():
"""The default function when there are more than 0 box masks."""
num_boxes = tf.shape(box_masks)[0]
box_masks_expanded = tf.expand_dims(box_masks, axis=3)
resized_crops = tf.image.crop_and_resize(
image=box_masks_expanded,
boxes=reframe_image_corners_relative_to_boxes(boxes),
box_indices=tf.range(num_boxes),
crop_size=[image_height, image_width],
method=resize_method,
extrapolation_value=0)
return tf.cast(resized_crops, box_masks.dtype)
image_masks = tf.cond(
tf.shape(box_masks)[0] > 0,
reframe_box_masks_to_image_masks_default,
lambda: tf.zeros([0, image_height, image_width, 1], box_masks.dtype))
return tf.squeeze(image_masks, axis=3)
input_image_size = (HEIGHT, WIDTH)
plt.figure(figsize=(20, 20))
min_score_thresh = 0.40 # Change minimum score for threshold to see all bounding boxes confidences
for i, serialized_example in enumerate(test_ds):
plt.subplot(1, 3, i+1)
decoded_tensors = tf_ex_decoder.decode(serialized_example)
image = build_inputs_for_object_detection(decoded_tensors['image'], input_image_size)
image = tf.expand_dims(image, axis=0)
image = tf.cast(image, dtype = tf.uint8)
image_np = image[0].numpy()
result = model_fn(image)
# Visualize detection and masks
if 'detection_masks' in result:
# we need to convert np.arrays to tensors
detection_masks = tf.convert_to_tensor(result['detection_masks'][0])
detection_boxes = tf.convert_to_tensor(result['detection_boxes'][0])
detection_masks_reframed = reframe_box_masks_to_image_masks(
detection_masks, detection_boxes/256.0,
image_np.shape[0], image_np.shape[1])
detection_masks_reframed = tf.cast(
detection_masks_reframed > min_score_thresh,
np.uint8)
result['detection_masks_reframed'] = detection_masks_reframed.numpy()
visualization_utils.visualize_boxes_and_labels_on_image_array(
image_np,
result['detection_boxes'][0].numpy(),
(result['detection_classes'][0] + 0).numpy().astype(int),
result['detection_scores'][0].numpy(),
category_index=category_index,
use_normalized_coordinates=False,
max_boxes_to_draw=200,
min_score_thresh=min_score_thresh,
instance_masks=result.get('detection_masks_reframed', None),
line_thickness=4)
plt.imshow(image_np)
plt.axis("off")
plt.show()