作者: fchollet
在 TensorFlow.org 上查看 | 在 Google Colab 中运行 | 在 GitHub 上查看源代码 | 在 keras.io 上查看 |
设置
import tensorflow as tf
from tensorflow import keras
Layer 类:状态(权重)和一些计算的组合
Keras 中的核心抽象之一是 Layer 类。层封装了状态(层的“权重”)和从输入到输出的转换(“调用”,层的正向传递)。
这是一个密集连接层。它有一个状态:变量 w 和 b。
class Linear(keras.layers.Layer):
def __init__(self, units=32, input_dim=32):
super().__init__()
self.w = self.add_weight(
shape=(input_dim, units), initializer="random_normal", trainable=True
)
self.b = self.add_weight(shape=(units,), initializer="zeros", trainable=True)
def call(self, inputs):
return tf.matmul(inputs, self.w) + self.b
您可以通过对一些张量输入进行调用来使用层,就像 Python 函数一样。
x = tf.ones((2, 2))
linear_layer = Linear(4, 2)
y = linear_layer(x)
print(y)
tf.Tensor( [[-0.02419483 -0.06813122 0.00395634 -0.03124779] [-0.02419483 -0.06813122 0.00395634 -0.03124779]], shape=(2, 4), dtype=float32)
请注意,权重 w 和 b 在被设置为层属性后会自动由层跟踪
assert linear_layer.weights == [linear_layer.w, linear_layer.b]
层可以具有不可训练的权重
除了可训练的权重之外,您还可以向层添加不可训练的权重。此类权重在反向传播期间不应被考虑在内,当您训练层时。
以下是添加和使用不可训练权重的方法
class ComputeSum(keras.layers.Layer):
def __init__(self, input_dim):
super().__init__()
self.total = self.add_weight(
initializer="zeros", shape=(input_dim,), trainable=False
)
def call(self, inputs):
self.total.assign_add(tf.reduce_sum(inputs, axis=0))
return self.total
x = tf.ones((2, 2))
my_sum = ComputeSum(2)
y = my_sum(x)
print(y.numpy())
y = my_sum(x)
print(y.numpy())
[2. 2.] [4. 4.]
它是 layer.weights 的一部分,但它被归类为不可训练的权重
print("weights:", len(my_sum.weights))
print("non-trainable weights:", len(my_sum.non_trainable_weights))
# It's not included in the trainable weights:
print("trainable_weights:", my_sum.trainable_weights)
weights: 1 non-trainable weights: 1 trainable_weights: []
最佳实践:推迟权重创建,直到知道输入的形状
我们上面的 Linear 层接受了一个 input_dim 参数,该参数用于在 __init__() 中计算权重 w 和 b 的形状
class Linear(keras.layers.Layer):
def __init__(self, units=32, input_dim=32):
super().__init__()
self.w = self.add_weight(
shape=(input_dim, units), initializer="random_normal", trainable=True
)
self.b = self.add_weight(shape=(units,), initializer="zeros", trainable=True)
def call(self, inputs):
return tf.matmul(inputs, self.w) + self.b
在许多情况下,您可能事先不知道输入的大小,并且希望在该值已知时延迟创建权重,即在实例化层后的某个时间点。
在 Keras API 中,我们建议在层的 build(self, inputs_shape) 方法中创建层权重。像这样
class Linear(keras.layers.Layer):
def __init__(self, units=32):
super().__init__()
self.units = units
def build(self, input_shape):
self.w = self.add_weight(
shape=(input_shape[-1], self.units),
initializer="random_normal",
trainable=True,
)
self.b = self.add_weight(
shape=(self.units,), initializer="random_normal", trainable=True
)
def call(self, inputs):
return tf.matmul(inputs, self.w) + self.b
您层的 __call__()
方法会在第一次调用时自动运行构建。现在您拥有一个延迟加载的层,因此更易于使用。
# At instantiation, we don't know on what inputs this is going to get called
linear_layer = Linear(32)
# The layer's weights are created dynamically the first time the layer is called
y = linear_layer(x)
如上所示,单独实现 build()
可以很好地将仅创建一次权重与每次调用中使用权重区分开来。但是,对于某些高级自定义层,将状态创建和计算分开可能不切实际。层实现者可以将权重创建延迟到第一次 __call__()
,但需要确保后续调用使用相同的权重。此外,由于 __call__()
很可能在 tf.function
内部首次执行,因此在 __call__()
中进行的任何变量创建都应包装在 tf.init_scope
中。
层是递归可组合的。
如果您将层实例作为另一个层的属性分配,则外部层将开始跟踪内部层创建的权重。
我们建议在 __init__()
方法中创建此类子层,并将其留给第一次 __call__()
来触发构建其权重。
class MLPBlock(keras.layers.Layer):
def __init__(self):
super().__init__()
self.linear_1 = Linear(32)
self.linear_2 = Linear(32)
self.linear_3 = Linear(1)
def call(self, inputs):
x = self.linear_1(inputs)
x = tf.nn.relu(x)
x = self.linear_2(x)
x = tf.nn.relu(x)
return self.linear_3(x)
mlp = MLPBlock()
y = mlp(tf.ones(shape=(3, 64))) # The first call to the `mlp` will create the weights
print("weights:", len(mlp.weights))
print("trainable weights:", len(mlp.trainable_weights))
weights: 6 trainable weights: 6
The add_loss()
方法
在编写层的 call()
方法时,您可以创建损失张量,您将在编写训练循环时使用这些张量。这可以通过调用 self.add_loss(value)
来实现。
# A layer that creates an activity regularization loss
class ActivityRegularizationLayer(keras.layers.Layer):
def __init__(self, rate=1e-2):
super().__init__()
self.rate = rate
def call(self, inputs):
self.add_loss(self.rate * tf.reduce_mean(inputs))
return inputs
请注意,add_loss()
可以接受普通 TensorFlow 操作的结果。这里不需要调用 Loss
对象。
这些损失(包括任何内部层创建的损失)可以通过 layer.losses
获取。此属性在每次 __call__()
开始时都会重置为顶层层,因此 layer.losses
始终包含上次前向传递期间创建的损失值。
class OuterLayer(keras.layers.Layer):
def __init__(self):
super().__init__()
self.activity_reg = ActivityRegularizationLayer(1e-2)
def call(self, inputs):
return self.activity_reg(inputs)
layer = OuterLayer()
assert len(layer.losses) == 0 # No losses yet since the layer has never been called
_ = layer(tf.zeros(1, 1))
assert len(layer.losses) == 1 # We created one loss value
# `layer.losses` gets reset at the start of each __call__
_ = layer(tf.zeros(1, 1))
assert len(layer.losses) == 1 # This is the loss created during the call above
此外,loss
属性还包含为任何内部层的权重创建的正则化损失。
class OuterLayerWithKernelRegularizer(keras.layers.Layer):
def __init__(self):
super().__init__()
self.dense = keras.layers.Dense(
32, kernel_regularizer=keras.regularizers.l2(1e-3)
)
def call(self, inputs):
return self.dense(inputs)
layer = OuterLayerWithKernelRegularizer()
_ = layer(tf.zeros((1, 1)))
# This is `1e-3 * sum(layer.dense.kernel ** 2)`,
# created by the `kernel_regularizer` above.
print(layer.losses)
[<tf.Tensor: shape=(), dtype=float32, numpy=0.0017542194>]
这些损失旨在在编写训练循环时考虑在内,例如
# Instantiate an optimizer.
optimizer = keras.optimizers.SGD(learning_rate=1e-3)
loss_fn = keras.losses.SparseCategoricalCrossentropy(from_logits=True)
# Iterate over the batches of a dataset.
for x_batch_train, y_batch_train in train_dataset:
with tf.GradientTape() as tape:
logits = layer(x_batch_train) # Logits for this minibatch
# Loss value for this minibatch
loss_value = loss_fn(y_batch_train, logits)
# Add extra losses created during this forward pass:
loss_value += sum(model.losses)
grads = tape.gradient(loss_value, model.trainable_weights)
optimizer.apply_gradients(zip(grads, model.trainable_weights))
有关编写训练循环的详细指南,请参阅 从头开始编写训练循环的指南。
这些损失也与 fit()
无缝协作(如果存在,它们会自动求和并添加到主损失中)。
import numpy as np
inputs = keras.Input(shape=(3,))
outputs = ActivityRegularizationLayer()(inputs)
model = keras.Model(inputs, outputs)
# If there is a loss passed in `compile`, the regularization
# losses get added to it
model.compile(optimizer="adam", loss="mse")
model.fit(np.random.random((2, 3)), np.random.random((2, 3)))
# It's also possible not to pass any loss in `compile`,
# since the model already has a loss to minimize, via the `add_loss`
# call during the forward pass!
model.compile(optimizer="adam")
model.fit(np.random.random((2, 3)), np.random.random((2, 3)))
1/1 [==============================] - 0s 75ms/step - loss: 0.1081 1/1 [==============================] - 0s 31ms/step - loss: 0.0044 <keras.src.callbacks.History at 0x7fb23c0e3f40>
您可以选择在您的层上启用序列化。
如果您需要将自定义层序列化为 函数式模型 的一部分,您可以选择实现 get_config()
方法。
class Linear(keras.layers.Layer):
def __init__(self, units=32):
super().__init__()
self.units = units
def build(self, input_shape):
self.w = self.add_weight(
shape=(input_shape[-1], self.units),
initializer="random_normal",
trainable=True,
)
self.b = self.add_weight(
shape=(self.units,), initializer="random_normal", trainable=True
)
def call(self, inputs):
return tf.matmul(inputs, self.w) + self.b
def get_config(self):
return {"units": self.units}
# Now you can recreate the layer from its config:
layer = Linear(64)
config = layer.get_config()
print(config)
new_layer = Linear.from_config(config)
{'units': 64}
请注意,基类 Layer
的 __init__()
方法接受一些关键字参数,特别是 name
和 dtype
。在 __init__()
中将这些参数传递给父类并将其包含在层配置中是一个好习惯。
class Linear(keras.layers.Layer):
def __init__(self, units=32, **kwargs):
super().__init__(**kwargs)
self.units = units
def build(self, input_shape):
self.w = self.add_weight(
shape=(input_shape[-1], self.units),
initializer="random_normal",
trainable=True,
)
self.b = self.add_weight(
shape=(self.units,), initializer="random_normal", trainable=True
)
def call(self, inputs):
return tf.matmul(inputs, self.w) + self.b
def get_config(self):
config = super().get_config()
config.update({"units": self.units})
return config
layer = Linear(64)
config = layer.get_config()
print(config)
new_layer = Linear.from_config(config)
{'name': 'linear_7', 'trainable': True, 'dtype': 'float32', 'units': 64}
如果您在从其配置反序列化层时需要更多灵活性,您还可以覆盖 from_config()
类方法。这是 from_config()
的基本实现。
def from_config(cls, config):
return cls(**config)
要了解有关序列化和保存的更多信息,请参阅完整的 保存和序列化模型的指南。
在 call()
方法中的特权 training
参数
某些层,特别是 BatchNormalization
层和 Dropout
层,在训练和推理期间的行为不同。对于此类层,通常的做法是在 call()
方法中公开一个 training
(布尔值)参数。
通过在 call()
中公开此参数,您可以使内置的训练和评估循环(例如 fit()
)能够在训练和推理中正确使用该层。
class CustomDropout(keras.layers.Layer):
def __init__(self, rate, **kwargs):
super().__init__(**kwargs)
self.rate = rate
def call(self, inputs, training=False):
if training:
return tf.nn.dropout(inputs, rate=self.rate)
return inputs
在 call()
方法中的特权 mask
参数
The call()
支持的另一个特权参数是 mask
参数。
您将在所有 Keras RNN 层中找到它。掩码是一个布尔张量(输入中每个时间步长一个布尔值),用于在处理时间序列数据时跳过某些输入时间步长。
当由先前层生成掩码时,Keras 会自动将正确的 mask
参数传递给支持它的层的 __call__()
。生成掩码的层是配置为 mask_zero=True
的 Embedding
层,以及 Masking
层。
要了解有关掩码以及如何编写支持掩码的层的更多信息,请查看指南 "了解填充和掩码"。
The Model
类
通常,您将使用 Layer
类来定义内部计算块,并将使用 Model
类来定义外部模型 - 您将要训练的对象。
例如,在 ResNet50 模型中,您将有几个子类化 Layer
的 ResNet 块,以及一个包含整个 ResNet50 网络的 Model
。
The Model
类具有与 Layer
相同的 API,但有以下区别
- 它公开了内置的训练、评估和预测循环 (
model.fit()
、model.evaluate()
、model.predict()
)。 - 它公开了其内部层的列表,通过
model.layers
属性。 - 它公开了保存和序列化 API (
save()
、save_weights()
...)
实际上,Layer
类对应于我们在文献中所指的“层”(如“卷积层”或“循环层”)或“块”(如“ResNet 块”或“Inception 块”)。
同时,Model
类对应于我们在文献中所指的“模型”(如“深度学习模型”)或“网络”(如“深度神经网络”)。
因此,如果您想知道,“我应该使用 Layer
类还是 Model
类?”,问问自己:我是否需要在上面调用 fit()
?我是否需要在上面调用 save()
?如果是,请选择 Model
。如果不是(要么是因为您的类只是更大系统中的一个块,要么是因为您自己编写了训练和保存代码),请使用 Layer
。
例如,我们可以使用上面的迷你 ResNet 示例来构建一个 Model
,我们可以使用 fit()
训练它,并使用 save_weights()
保存它。
class ResNet(keras.Model):
def __init__(self, num_classes=1000):
super().__init__()
self.block_1 = ResNetBlock()
self.block_2 = ResNetBlock()
self.global_pool = layers.GlobalAveragePooling2D()
self.classifier = Dense(num_classes)
def call(self, inputs):
x = self.block_1(inputs)
x = self.block_2(x)
x = self.global_pool(x)
return self.classifier(x)
resnet = ResNet()
dataset = ...
resnet.fit(dataset, epochs=10)
resnet.save(filepath.keras)
将所有内容整合在一起:一个端到端示例
以下是您到目前为止学到的内容
- 一个
Layer
封装了一个状态(在__init__()
或build()
中创建)和一些计算(在call()
中定义)。 - 层可以递归嵌套以创建新的、更大的计算块。
- 层可以通过
add_loss()
创建和跟踪损失(通常是正则化损失)。 - 外部容器,您要训练的东西,是一个
Model
。一个Model
就像一个Layer
,但增加了训练和序列化实用程序。
让我们将所有这些内容整合到一个端到端示例中:我们将实现一个变分自动编码器 (VAE)。我们将使用 MNIST 数字对其进行训练。
我们的 VAE 将是 Model
的子类,构建为子类化 Layer
的层的嵌套组合。它将具有正则化损失(KL 散度)。
from keras import layers
@keras.saving.register_keras_serializable()
class Sampling(layers.Layer):
"""Uses (z_mean, z_log_var) to sample z, the vector encoding a digit."""
def call(self, inputs):
z_mean, z_log_var = inputs
batch = tf.shape(z_mean)[0]
dim = tf.shape(z_mean)[1]
epsilon = keras.backend.random_normal(shape=(batch, dim))
return z_mean + tf.exp(0.5 * z_log_var) * epsilon
@keras.saving.register_keras_serializable()
class Encoder(layers.Layer):
"""Maps MNIST digits to a triplet (z_mean, z_log_var, z)."""
def __init__(self, latent_dim=32, intermediate_dim=64, name="encoder", **kwargs):
super().__init__(name=name, **kwargs)
self.dense_proj = layers.Dense(intermediate_dim, activation="relu")
self.dense_mean = layers.Dense(latent_dim)
self.dense_log_var = layers.Dense(latent_dim)
self.sampling = Sampling()
def call(self, inputs):
x = self.dense_proj(inputs)
z_mean = self.dense_mean(x)
z_log_var = self.dense_log_var(x)
z = self.sampling((z_mean, z_log_var))
return z_mean, z_log_var, z
@keras.saving.register_keras_serializable()
class Decoder(layers.Layer):
"""Converts z, the encoded digit vector, back into a readable digit."""
def __init__(self, original_dim, intermediate_dim=64, name="decoder", **kwargs):
super().__init__(name=name, **kwargs)
self.dense_proj = layers.Dense(intermediate_dim, activation="relu")
self.dense_output = layers.Dense(original_dim, activation="sigmoid")
def call(self, inputs):
x = self.dense_proj(inputs)
return self.dense_output(x)
@keras.saving.register_keras_serializable()
class VariationalAutoEncoder(keras.Model):
"""Combines the encoder and decoder into an end-to-end model for training."""
def __init__(
self,
original_dim,
intermediate_dim=64,
latent_dim=32,
name="autoencoder",
**kwargs
):
super().__init__(name=name, **kwargs)
self.original_dim = original_dim
self.encoder = Encoder(latent_dim=latent_dim, intermediate_dim=intermediate_dim)
self.decoder = Decoder(original_dim, intermediate_dim=intermediate_dim)
def call(self, inputs):
z_mean, z_log_var, z = self.encoder(inputs)
reconstructed = self.decoder(z)
# Add KL divergence regularization loss.
kl_loss = -0.5 * tf.reduce_mean(
z_log_var - tf.square(z_mean) - tf.exp(z_log_var) + 1
)
self.add_loss(kl_loss)
return reconstructed
让我们在 MNIST 上编写一个简单的训练循环
original_dim = 784
vae = VariationalAutoEncoder(original_dim, 64, 32)
optimizer = keras.optimizers.Adam(learning_rate=1e-3)
mse_loss_fn = keras.losses.MeanSquaredError()
loss_metric = keras.metrics.Mean()
(x_train, _), _ = keras.datasets.mnist.load_data()
x_train = x_train.reshape(60000, 784).astype("float32") / 255
train_dataset = tf.data.Dataset.from_tensor_slices(x_train)
train_dataset = train_dataset.shuffle(buffer_size=1024).batch(64)
epochs = 2
# Iterate over epochs.
for epoch in range(epochs):
print("Start of epoch %d" % (epoch,))
# Iterate over the batches of the dataset.
for step, x_batch_train in enumerate(train_dataset):
with tf.GradientTape() as tape:
reconstructed = vae(x_batch_train)
# Compute reconstruction loss
loss = mse_loss_fn(x_batch_train, reconstructed)
loss += sum(vae.losses) # Add KLD regularization loss
grads = tape.gradient(loss, vae.trainable_weights)
optimizer.apply_gradients(zip(grads, vae.trainable_weights))
loss_metric(loss)
if step % 100 == 0:
print("step %d: mean loss = %.4f" % (step, loss_metric.result()))
Start of epoch 0 WARNING:tensorflow:5 out of the last 5 calls to <function _BaseOptimizer._update_step_xla at 0x7fb220066af0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://tensorflowcn.cn/guide/function#controlling_retracing and https://tensorflowcn.cn/api_docs/python/tf/function for more details. WARNING:tensorflow:6 out of the last 6 calls to <function _BaseOptimizer._update_step_xla at 0x7fb220066af0> triggered tf.function retracing. Tracing is expensive and the excessive number of tracings could be due to (1) creating @tf.function repeatedly in a loop, (2) passing tensors with different shapes, (3) passing Python objects instead of tensors. For (1), please define your @tf.function outside of the loop. For (2), @tf.function has reduce_retracing=True option that can avoid unnecessary retracing. For (3), please refer to https://tensorflowcn.cn/guide/function#controlling_retracing and https://tensorflowcn.cn/api_docs/python/tf/function for more details. step 0: mean loss = 0.3433 step 100: mean loss = 0.1257 step 200: mean loss = 0.0994 step 300: mean loss = 0.0893 step 400: mean loss = 0.0844 step 500: mean loss = 0.0810 step 600: mean loss = 0.0788 step 700: mean loss = 0.0772 step 800: mean loss = 0.0760 step 900: mean loss = 0.0750 Start of epoch 1 step 0: mean loss = 0.0747 step 100: mean loss = 0.0741 step 200: mean loss = 0.0736 step 300: mean loss = 0.0731 step 400: mean loss = 0.0727 step 500: mean loss = 0.0723 step 600: mean loss = 0.0720 step 700: mean loss = 0.0717 step 800: mean loss = 0.0715 step 900: mean loss = 0.0712
请注意,由于 VAE 是 Model
的子类,因此它具有内置的训练循环。因此,您也可以这样训练它
vae = VariationalAutoEncoder(784, 64, 32)
optimizer = keras.optimizers.Adam(learning_rate=1e-3)
vae.compile(optimizer, loss=keras.losses.MeanSquaredError())
vae.fit(x_train, x_train, epochs=2, batch_size=64)
Epoch 1/2 938/938 [==============================] - 4s 3ms/step - loss: 0.0746 Epoch 2/2 938/938 [==============================] - 3s 3ms/step - loss: 0.0676 <keras.src.callbacks.History at 0x7fb1e0533580>