在 TensorFlow.org 上查看 | 在 Google Colab 中运行 | 在 GitHub 上查看源代码 | 下载笔记本 |
本指南演示了如何将您在 TPU 上运行的工作流程从 TensorFlow 1 的 TPUEstimator
API 迁移到 TensorFlow 2 的 TPUStrategy
API。
- 在 TensorFlow 1 中,
tf.compat.v1.estimator.tpu.TPUEstimator
API 允许您训练和评估模型,以及在 (云) TPU 上执行推理并保存您的模型(用于服务)。 - 在 TensorFlow 2 中,要在 TPU 和 TPU Pod(通过专用高速网络接口连接的 TPU 设备集合)上执行同步训练,您需要使用 TPU 分布式策略 -
tf.distribute.TPUStrategy
。该策略可以与 Keras API 一起使用 - 包括模型构建 (tf.keras.Model
)、优化器 (tf.keras.optimizers.Optimizer
) 和训练 (Model.fit
) - 以及自定义训练循环(使用tf.function
和tf.GradientTape
)。
有关端到端 TensorFlow 2 示例,请查看 使用 TPU 指南 - 主要是“TPU 上的分类”部分 - 以及 使用 BERT 在 TPU 上解决 GLUE 任务 教程。您可能还会发现 分布式训练 指南很有用,其中涵盖了所有 TensorFlow 分布式策略,包括 TPUStrategy
。
设置
从导入和简单的演示数据集开始
import tensorflow as tf
import tensorflow.compat.v1 as tf1
2023-06-09 12:22:02.963028: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Could not find TensorRT
features = [[1., 1.5]]
labels = [[0.3]]
eval_features = [[4., 4.5]]
eval_labels = [[0.8]]
TensorFlow 1:使用 TPUEstimator 在 TPU 上驱动模型
本指南的这一部分演示了如何在 TensorFlow 1 中使用 tf.compat.v1.estimator.tpu.TPUEstimator
执行训练和评估。
要使用 TPUEstimator
,首先定义几个函数:训练数据的输入函数、评估数据的评估输入函数,以及模型函数,该函数告诉 TPUEstimator
如何使用特征和标签定义训练操作
def _input_fn(params):
dataset = tf1.data.Dataset.from_tensor_slices((features, labels))
dataset = dataset.repeat()
return dataset.batch(params['batch_size'], drop_remainder=True)
def _eval_input_fn(params):
dataset = tf1.data.Dataset.from_tensor_slices((eval_features, eval_labels))
dataset = dataset.repeat()
return dataset.batch(params['batch_size'], drop_remainder=True)
def _model_fn(features, labels, mode, params):
logits = tf1.layers.Dense(1)(features)
loss = tf1.losses.mean_squared_error(labels=labels, predictions=logits)
optimizer = tf1.train.AdagradOptimizer(0.05)
train_op = optimizer.minimize(loss, global_step=tf1.train.get_global_step())
return tf1.estimator.tpu.TPUEstimatorSpec(mode, loss=loss, train_op=train_op)
定义完这些函数后,创建一个 tf.distribute.cluster_resolver.TPUClusterResolver
,它提供集群信息,以及一个 tf.compat.v1.estimator.tpu.RunConfig
对象。结合您定义的模型函数,您现在可以创建一个 TPUEstimator
。在这里,您将通过跳过检查点保存来简化流程。然后,您将为 TPUEstimator
指定训练和评估的批次大小。
cluster_resolver = tf1.distribute.cluster_resolver.TPUClusterResolver(tpu='')
print("All devices: ", tf1.config.list_logical_devices('TPU'))
All devices: [] 2023-06-09 12:22:04.200684: E tensorflow/compiler/xla/stream_executor/cuda/cuda_driver.cc:266] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected
tpu_config = tf1.estimator.tpu.TPUConfig(iterations_per_loop=10)
config = tf1.estimator.tpu.RunConfig(
cluster=cluster_resolver,
save_checkpoints_steps=None,
tpu_config=tpu_config)
estimator = tf1.estimator.tpu.TPUEstimator(
model_fn=_model_fn,
config=config,
train_batch_size=8,
eval_batch_size=8)
WARNING:tensorflow:From /tmpfs/tmp/ipykernel_15327/4277674569.py:1: The name tf.estimator.tpu.TPUConfig is deprecated. Please use tf.compat.v1.estimator.tpu.TPUConfig instead. WARNING:tensorflow:From /tmpfs/tmp/ipykernel_15327/4277674569.py:1: TPUConfig.__new__ (from tensorflow_estimator.python.estimator.tpu.tpu_config) is deprecated and will be removed in a future version. Instructions for updating: Use tf.keras instead. WARNING:tensorflow:From /tmpfs/tmp/ipykernel_15327/4277674569.py:2: RunConfig.__init__ (from tensorflow_estimator.python.estimator.tpu.tpu_config) is deprecated and will be removed in a future version. Instructions for updating: Use tf.keras instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow_estimator/python/estimator/tpu/tpu_config.py:268: RunConfig.__init__ (from tensorflow_estimator.python.estimator.run_config) is deprecated and will be removed in a future version. Instructions for updating: Use tf.keras instead. WARNING:tensorflow:From /tmpfs/tmp/ipykernel_15327/4277674569.py:6: TPUEstimator.__init__ (from tensorflow_estimator.python.estimator.tpu.tpu_estimator) is deprecated and will be removed in a future version. Instructions for updating: Use tf.keras instead. WARNING:tensorflow:Estimator's model_fn (<function _model_fn at 0x7f66f9c41670>) includes params argument, but params are not passed to Estimator. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py:2811: Estimator.__init__ (from tensorflow_estimator.python.estimator.estimator) is deprecated and will be removed in a future version. Instructions for updating: Use tf.keras instead. WARNING:tensorflow:Using temporary folder as model directory: /tmpfs/tmp/tmpfi5eso9h INFO:tensorflow:Using config: {'_model_dir': '/tmpfs/tmp/tmpfi5eso9h', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': None, '_session_config': allow_soft_placement: true cluster_def { job { name: "worker" tasks { key: 0 value: "10.25.167.66:8470" } } } isolate_session_state: true , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': None, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({'worker': ['10.25.167.66:8470']}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': 'grpc://10.25.167.66:8470', '_evaluation_master': 'grpc://10.25.167.66:8470', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1, '_tpu_config': TPUConfig(iterations_per_loop=10, num_shards=None, num_cores_per_replica=None, per_host_input_for_training=2, tpu_job_name=None, initial_infeed_sleep_secs=None, input_partition_dims=None, eval_training_input_configuration=2, experimental_host_call_every_n_steps=1, experimental_allow_per_host_v2_parallel_get_next=False, experimental_feed_hook=None), '_cluster': <tensorflow.python.distribute.cluster_resolver.tpu.tpu_cluster_resolver.TPUClusterResolver object at 0x7f66f9c49e50>} INFO:tensorflow:_TPUContext: eval_on_tpu True
调用 TPUEstimator.train
开始训练模型
estimator.train(_input_fn, steps=1)
INFO:tensorflow:Querying Tensorflow master (grpc://10.25.167.66:8470) for TPU system metadata. INFO:tensorflow:Found TPU system: INFO:tensorflow:*** Num TPU Cores: 8 INFO:tensorflow:*** Num TPU Workers: 1 INFO:tensorflow:*** Num TPU Cores Per Worker: 8 INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, -1, 1291425829812295795) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 17179869184, -3325997117977499465) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 17179869184, 8477538334583946656) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 17179869184, 7772414489121114884) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 17179869184, 3690613627338882953) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 17179869184, 7506155478907565168) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 17179869184, 2236267778124756088) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 17179869184, -3746359292134531998) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 17179869184, -7944284987887513631) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 17179869184, -5726915818709471474) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 17179869184, -2156150057367007347) WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/training/training_util.py:396: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. INFO:tensorflow:Calling model_fn. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py:2371: StepCounterHook.__init__ (from tensorflow.python.training.basic_session_run_hooks) is deprecated and will be removed in a future version. Instructions for updating: Use tf.keras instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/training/basic_session_run_hooks.py:686: SecondOrStepTimer.__init__ (from tensorflow.python.training.basic_session_run_hooks) is deprecated and will be removed in a future version. Instructions for updating: Use tf.keras instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/training/adagrad.py:138: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor WARNING:tensorflow:From /tmpfs/tmp/ipykernel_15327/3404938034.py:16: TPUEstimatorSpec.__new__ (from tensorflow_estimator.python.estimator.tpu.tpu_estimator) is deprecated and will be removed in a future version. Instructions for updating: Use tf.keras instead. 2023-06-09 12:22:04.585870: W tensorflow/core/distributed_runtime/rpc/grpc_session.cc:374] GrpcSession::ListDevices will initialize the session with an empty graph and other defaults because the session has not yet been created. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py:3328: LoggingTensorHook.__init__ (from tensorflow.python.training.basic_session_run_hooks) is deprecated and will be removed in a future version. Instructions for updating: Use tf.keras instead. INFO:tensorflow:Bypassing TPUEstimator hook WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py:3369: EstimatorSpec.__new__ (from tensorflow_estimator.python.estimator.model_fn) is deprecated and will be removed in a future version. Instructions for updating: Use tf.keras instead. INFO:tensorflow:Done calling model_fn. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow_estimator/python/estimator/estimator.py:1414: NanTensorHook.__init__ (from tensorflow.python.training.basic_session_run_hooks) is deprecated and will be removed in a future version. Instructions for updating: Use tf.keras instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/training/monitored_session.py:586: SummarySaverHook.__init__ (from tensorflow.python.training.basic_session_run_hooks) is deprecated and will be removed in a future version. Instructions for updating: Use tf.keras instead. INFO:tensorflow:TPU job name worker INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py:760: Variable.load (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Prefer Variable.assign which has equivalent behavior in 2.X. INFO:tensorflow:Initialized dataset iterators in 0 seconds INFO:tensorflow:Installing graceful shutdown hook. INFO:tensorflow:Creating heartbeat manager for ['/job:worker/replica:0/task:0/device:CPU:0'] INFO:tensorflow:Configuring worker heartbeat: shutdown_mode: WAIT_FOR_COORDINATOR INFO:tensorflow:Init TPU system 2023-06-09 12:22:04.975589: W tensorflow/core/distributed_runtime/rpc/grpc_session.cc:374] GrpcSession::ListDevices will initialize the session with an empty graph and other defaults because the session has not yet been created. INFO:tensorflow:Initialized TPU in 4 seconds INFO:tensorflow:Starting infeed thread controller. INFO:tensorflow:Starting outfeed thread controller. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/training/monitored_session.py:1455: SessionRunArgs.__new__ (from tensorflow.python.training.session_run_hook) is deprecated and will be removed in a future version. Instructions for updating: Use tf.keras instead. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/training/monitored_session.py:1454: SessionRunContext.__init__ (from tensorflow.python.training.session_run_hook) is deprecated and will be removed in a future version. Instructions for updating: Use tf.keras instead. INFO:tensorflow:Enqueue next (1) batch(es) of data to infeed. INFO:tensorflow:Dequeue next (1) batch(es) of data from outfeed. INFO:tensorflow:Outfeed finished for iteration (0, 0) WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/training/monitored_session.py:1474: SessionRunValues.__new__ (from tensorflow.python.training.session_run_hook) is deprecated and will be removed in a future version. Instructions for updating: Use tf.keras instead. INFO:tensorflow:loss = 2.3149996, step = 1 INFO:tensorflow:Stop infeed thread controller INFO:tensorflow:Shutting down InfeedController thread. INFO:tensorflow:InfeedController received shutdown signal, stopping. INFO:tensorflow:Infeed thread finished, shutting down. INFO:tensorflow:infeed marked as finished INFO:tensorflow:Stop output thread controller INFO:tensorflow:Shutting down OutfeedController thread. INFO:tensorflow:OutfeedController received shutdown signal, stopping. INFO:tensorflow:Outfeed thread finished, shutting down. INFO:tensorflow:outfeed marked as finished INFO:tensorflow:Shutdown TPU system. INFO:tensorflow:Loss for final step: 2.3149996. INFO:tensorflow:training_loop marked as finished <tensorflow_estimator.python.estimator.tpu.tpu_estimator.TPUEstimator at 0x7f6750bd6d30>
然后,调用 TPUEstimator.evaluate
使用评估数据评估模型
estimator.evaluate(_eval_input_fn, steps=1)
INFO:tensorflow:Could not find trained model in model_dir: /tmpfs/tmp/tmpfi5eso9h, running initialization to evaluate. INFO:tensorflow:Calling model_fn. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/util/dispatch.py:1176: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Deprecated in favor of operator or tf.math.divide. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2023-06-09T12:22:09 WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/python/training/evaluation.py:260: FinalOpsHook.__init__ (from tensorflow.python.training.basic_session_run_hooks) is deprecated and will be removed in a future version. Instructions for updating: Use tf.keras instead. INFO:tensorflow:TPU job name worker INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Init TPU system INFO:tensorflow:Initialized TPU in 4 seconds INFO:tensorflow:Starting infeed thread controller. INFO:tensorflow:Starting outfeed thread controller. INFO:tensorflow:Initialized dataset iterators in 0 seconds INFO:tensorflow:Enqueue next (1) batch(es) of data to infeed. INFO:tensorflow:Dequeue next (1) batch(es) of data from outfeed. INFO:tensorflow:Outfeed finished for iteration (0, 0) INFO:tensorflow:Evaluation [1/1] INFO:tensorflow:Stop infeed thread controller INFO:tensorflow:Shutting down InfeedController thread. INFO:tensorflow:InfeedController received shutdown signal, stopping. INFO:tensorflow:Infeed thread finished, shutting down. INFO:tensorflow:infeed marked as finished INFO:tensorflow:Stop output thread controller INFO:tensorflow:Shutting down OutfeedController thread. INFO:tensorflow:OutfeedController received shutdown signal, stopping. INFO:tensorflow:Outfeed thread finished, shutting down. INFO:tensorflow:outfeed marked as finished INFO:tensorflow:Shutdown TPU system. INFO:tensorflow:Inference Time : 5.10077s INFO:tensorflow:Finished evaluation at 2023-06-09-12:22:14 INFO:tensorflow:Saving dict for global step 1: global_step = 1, loss = 5.8631864 INFO:tensorflow:evaluation_loop marked as finished {'loss': 5.8631864, 'global_step': 1}
TensorFlow 2:使用 Keras Model.fit 和 TPUStrategy 在 TPU 上驱动模型
在 TensorFlow 2 中,要在 TPU 工作器上进行训练,请使用 tf.distribute.TPUStrategy
以及 Keras API 来定义模型和进行训练/评估。(有关使用 Keras Model.fit
和自定义训练循环(使用 tf.function
和 tf.GradientTape
)的更多示例,请参阅 使用 TPU 指南)。
由于您需要执行一些初始化工作才能连接到远程集群并初始化 TPU 工作器,因此首先创建一个 TPUClusterResolver
来提供集群信息并连接到集群。(在 使用 TPU 指南的“TPU 初始化”部分了解更多信息。)
cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='')
tf.config.experimental_connect_to_cluster(cluster_resolver)
tf.tpu.experimental.initialize_tpu_system(cluster_resolver)
print("All devices: ", tf.config.list_logical_devices('TPU'))
INFO:tensorflow:Deallocate tpu buffers before initializing tpu system. INFO:tensorflow:Deallocate tpu buffers before initializing tpu system. INFO:tensorflow:Initializing the TPU system: grpc://10.25.167.66:8470 INFO:tensorflow:Initializing the TPU system: grpc://10.25.167.66:8470 INFO:tensorflow:Finished initializing TPU system. INFO:tensorflow:Finished initializing TPU system. All devices: [LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:0', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:1', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:2', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:3', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:4', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:5', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:6', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:7', device_type='TPU')]
接下来,在数据准备就绪后,您将创建一个 TPUStrategy
,在该策略的范围内定义模型、指标和优化器。
为了实现与 TPUStrategy
相当的训练速度,您应该确保在 Model.compile
中为 steps_per_execution
选择一个数字,因为它指定了在每次 tf.function
调用期间运行的批次数量,这对性能至关重要。此参数类似于 TPUEstimator
中使用的 iterations_per_loop
。如果您使用的是自定义训练循环,则应确保在 tf.function
化的训练函数中运行多个步骤。请访问 使用 TPU 指南的“使用 tf.function 中的多个步骤提高性能”部分了解更多信息。
tf.distribute.TPUStrategy
可以支持有界动态形状,即可以推断出动态形状计算的上限。但是,与静态形状相比,动态形状可能会带来一些性能开销。因此,通常建议您尽可能使输入形状保持静态,尤其是在训练过程中。一个常见的返回动态形状的操作是 tf.data.Dataset.batch(batch_size)
,因为流中剩余的样本数量可能少于批次大小。因此,在 TPU 上训练时,您应该使用 tf.data.Dataset.batch(..., drop_remainder=True)
以获得最佳训练性能。
dataset = tf.data.Dataset.from_tensor_slices(
(features, labels)).shuffle(10).repeat().batch(
8, drop_remainder=True).prefetch(2)
eval_dataset = tf.data.Dataset.from_tensor_slices(
(eval_features, eval_labels)).batch(1, drop_remainder=True)
strategy = tf.distribute.TPUStrategy(cluster_resolver)
with strategy.scope():
model = tf.keras.models.Sequential([tf.keras.layers.Dense(1)])
optimizer = tf.keras.optimizers.Adagrad(learning_rate=0.05)
model.compile(optimizer, "mse", steps_per_execution=10)
INFO:tensorflow:Found TPU system: INFO:tensorflow:Found TPU system: INFO:tensorflow:*** Num TPU Cores: 8 INFO:tensorflow:*** Num TPU Cores: 8 INFO:tensorflow:*** Num TPU Workers: 1 INFO:tensorflow:*** Num TPU Workers: 1 INFO:tensorflow:*** Num TPU Cores Per Worker: 8 INFO:tensorflow:*** Num TPU Cores Per Worker: 8 INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0)
有了这些,您就可以使用训练数据集训练模型了。
model.fit(dataset, epochs=5, steps_per_epoch=10)
Epoch 1/5 10/10 [==============================] - 1s 117ms/step - loss: 1.6286 Epoch 2/5 10/10 [==============================] - 0s 4ms/step - loss: 0.6109 Epoch 3/5 10/10 [==============================] - 0s 4ms/step - loss: 0.2844 Epoch 4/5 10/10 [==============================] - 0s 4ms/step - loss: 0.1395 Epoch 5/5 10/10 [==============================] - 0s 4ms/step - loss: 0.0699 <keras.callbacks.History at 0x7f66d86adf10>
最后,使用评估数据集评估模型。
model.evaluate(eval_dataset, return_dict=True)
1/1 [==============================] - 2s 2s/step - loss: 1.2904 {'loss': 1.2903766632080078}
后续步骤
要详细了解 TensorFlow 2 中的 TPUStrategy
,请考虑以下资源
- 指南:使用 TPU(涵盖使用 Keras
Model.fit
/使用tf.distribute.TPUStrategy
的自定义训练循环,以及使用tf.function
提高性能的技巧) - 指南:使用 TensorFlow 进行分布式训练
要详细了解如何自定义训练,请参考
TPU 是 Google 专为机器学习设计的专用 ASIC,可通过 Google Colab、TPU Research Cloud 和 Cloud TPU 获得。