在 TensorFlow.org 上查看 | 在 Google Colab 中运行 | 在 GitHub 上查看源代码 | 下载笔记本 |
本指南演示了如何将嵌入式训练从 TensorFlow 1 的 embedding_column
API 与 TPUEstimator
迁移到 TensorFlow 2 的 TPUEmbedding
层 API 与 TPUStrategy
,在 TPU 上进行。
嵌入是(大型)矩阵。它们是查找表,将稀疏特征空间映射到密集向量。嵌入提供高效且密集的表示,捕获特征之间复杂的相似性和关系。
TensorFlow 包含专门支持在 TPU 上训练嵌入。这种 TPU 特定的嵌入支持允许您训练比单个 TPU 设备内存更大的嵌入,并在 TPU 上使用稀疏和不规则输入。
- 在 TensorFlow 1 中,
tf.compat.v1.estimator.tpu.TPUEstimator
是一个高级 API,它封装了训练、评估、预测和导出以供与 TPU 一起使用。它对tf.compat.v1.tpu.experimental.embedding_column
有特殊支持。 - 要在 TensorFlow 2 中实现这一点,请使用 TensorFlow Recommenders 的
tfrs.layers.embedding.TPUEmbedding
层。对于训练和评估,请使用 TPU 分布式策略 -tf.distribute.TPUStrategy
- 它与 Keras API 兼容,例如模型构建 (tf.keras.Model
)、优化器 (tf.keras.optimizers.Optimizer
) 以及使用Model.fit
或使用tf.function
和tf.GradientTape
的自定义训练循环进行训练。
有关更多信息,请参阅 tfrs.layers.embedding.TPUEmbedding
层的 API 文档,以及 tf.tpu.experimental.embedding.TableConfig
和 tf.tpu.experimental.embedding.FeatureConfig
文档以获取更多信息。有关 tf.distribute.TPUStrategy
的概述,请查看 分布式训练 指南和 使用 TPU 指南。如果您要从 TPUEstimator
迁移到 TPUStrategy
,请查看 TPU 迁移指南。
设置
首先安装 TensorFlow Recommenders 并导入一些必要的包
pip install tensorflow-recommenders
import tensorflow as tf
import tensorflow.compat.v1 as tf1
# TPUEmbedding layer is not part of TensorFlow.
import tensorflow_recommenders as tfrs
/tmpfs/src/tf_docs_env/lib/python3.6/site-packages/requests/__init__.py:104: RequestsDependencyWarning: urllib3 (1.26.8) or chardet (2.3.0)/charset_normalizer (2.0.12) doesn't match a supported version! RequestsDependencyWarning)
并准备一个简单的演示数据集
features = [[1., 1.5]]
embedding_features_indices = [[0, 0], [0, 1]]
embedding_features_values = [0, 5]
labels = [[0.3]]
eval_features = [[4., 4.5]]
eval_embedding_features_indices = [[0, 0], [0, 1]]
eval_embedding_features_values = [4, 3]
eval_labels = [[0.8]]
TensorFlow 1:使用 TPUEstimator 在 TPU 上训练嵌入
在 TensorFlow 1 中,您可以使用 tf.compat.v1.tpu.experimental.embedding_column
API 设置 TPU 嵌入,并使用 tf.compat.v1.estimator.tpu.TPUEstimator
在 TPU 上训练/评估模型。
输入是范围从零到 TPU 嵌入表词汇量大小的整数。首先使用 tf.feature_column.categorical_column_with_identity
将输入编码为分类 ID。由于输入特征是整数值,因此使用 "sparse_feature"
作为 key
参数,而 num_buckets
是嵌入表的词汇量大小 (10
)。
embedding_id_column = (
tf1.feature_column.categorical_column_with_identity(
key="sparse_feature", num_buckets=10))
接下来,使用 tpu.experimental.embedding_column
将稀疏分类输入转换为密集表示,其中 dimension
是嵌入表的宽度。它将为每个 num_buckets
存储一个嵌入向量。
embedding_column = tf1.tpu.experimental.embedding_column(
embedding_id_column, dimension=5)
现在,通过 tf.estimator.tpu.experimental.EmbeddingConfigSpec
定义 TPU 特定的嵌入配置。稍后,您将将其作为 embedding_config_spec
参数传递给 tf.estimator.tpu.TPUEstimator
。
embedding_config_spec = tf1.estimator.tpu.experimental.EmbeddingConfigSpec(
feature_columns=(embedding_column,),
optimization_parameters=(
tf1.tpu.experimental.AdagradParameters(0.05)))
接下来,要使用 TPUEstimator
,请定义
- 训练数据的输入函数
- 评估数据的评估输入函数
- 一个用于指导
TPUEstimator
如何使用特征和标签定义训练操作的模型函数
def _input_fn(params):
dataset = tf1.data.Dataset.from_tensor_slices((
{"dense_feature": features,
"sparse_feature": tf1.SparseTensor(
embedding_features_indices,
embedding_features_values, [1, 2])},
labels))
dataset = dataset.repeat()
return dataset.batch(params['batch_size'], drop_remainder=True)
def _eval_input_fn(params):
dataset = tf1.data.Dataset.from_tensor_slices((
{"dense_feature": eval_features,
"sparse_feature": tf1.SparseTensor(
eval_embedding_features_indices,
eval_embedding_features_values, [1, 2])},
eval_labels))
dataset = dataset.repeat()
return dataset.batch(params['batch_size'], drop_remainder=True)
def _model_fn(features, labels, mode, params):
embedding_features = tf1.keras.layers.DenseFeatures(embedding_column)(features)
concatenated_features = tf1.keras.layers.Concatenate(axis=1)(
[embedding_features, features["dense_feature"]])
logits = tf1.layers.Dense(1)(concatenated_features)
loss = tf1.losses.mean_squared_error(labels=labels, predictions=logits)
optimizer = tf1.train.AdagradOptimizer(0.05)
optimizer = tf1.tpu.CrossShardOptimizer(optimizer)
train_op = optimizer.minimize(loss, global_step=tf1.train.get_global_step())
return tf1.estimator.tpu.TPUEstimatorSpec(mode, loss=loss, train_op=train_op)
定义完这些函数后,创建一个 tf.distribute.cluster_resolver.TPUClusterResolver
来提供集群信息,以及一个 tf.compat.v1.estimator.tpu.RunConfig
对象。
结合你定义的模型函数,现在可以创建一个 TPUEstimator
。这里,我们将简化流程,跳过检查点保存。然后,你将为 TPUEstimator
指定训练和评估的批次大小。
cluster_resolver = tf1.distribute.cluster_resolver.TPUClusterResolver(tpu='')
print("All devices: ", tf1.config.list_logical_devices('TPU'))
All devices: []
tpu_config = tf1.estimator.tpu.TPUConfig(
iterations_per_loop=10,
per_host_input_for_training=tf1.estimator.tpu.InputPipelineConfig
.PER_HOST_V2)
config = tf1.estimator.tpu.RunConfig(
cluster=cluster_resolver,
save_checkpoints_steps=None,
tpu_config=tpu_config)
estimator = tf1.estimator.tpu.TPUEstimator(
model_fn=_model_fn, config=config, train_batch_size=8, eval_batch_size=8,
embedding_config_spec=embedding_config_spec)
WARNING:tensorflow:Estimator's model_fn (<function _model_fn at 0x7f168033fc80>) includes params argument, but params are not passed to Estimator. WARNING:tensorflow:Using temporary folder as model directory: /tmp/tmpxc9fm1_q INFO:tensorflow:Using config: {'_model_dir': '/tmp/tmpxc9fm1_q', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': None, '_session_config': allow_soft_placement: true cluster_def { job { name: "worker" tasks { key: 0 value: "10.240.1.10:8470" } } } isolate_session_state: true , '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': None, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_checkpoint_save_graph_def': True, '_service': None, '_cluster_spec': ClusterSpec({'worker': ['10.240.1.10:8470']}), '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': 'grpc://10.240.1.10:8470', '_evaluation_master': 'grpc://10.240.1.10:8470', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1, '_tpu_config': TPUConfig(iterations_per_loop=10, num_shards=None, num_cores_per_replica=None, per_host_input_for_training=3, tpu_job_name=None, initial_infeed_sleep_secs=None, input_partition_dims=None, eval_training_input_configuration=2, experimental_host_call_every_n_steps=1, experimental_allow_per_host_v2_parallel_get_next=False, experimental_feed_hook=None), '_cluster': <tensorflow.python.distribute.cluster_resolver.tpu.tpu_cluster_resolver.TPUClusterResolver object at 0x7f16803b4a20>} INFO:tensorflow:_TPUContext: eval_on_tpu True
调用 TPUEstimator.train
开始训练模型
estimator.train(_input_fn, steps=1)
INFO:tensorflow:Querying Tensorflow master (grpc://10.240.1.10:8470) for TPU system metadata. INFO:tensorflow:Found TPU system: INFO:tensorflow:*** Num TPU Cores: 8 INFO:tensorflow:*** Num TPU Workers: 1 INFO:tensorflow:*** Num TPU Cores Per Worker: 8 INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, -1, 6349538157198932596) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 17179869184, 9059152445598865227) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 17179869184, 3922455949451878923) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 17179869184, -6084187114011162725) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 17179869184, 8400191476321474241) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 17179869184, 5484621084550964852) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 17179869184, -8416772895681308377) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 17179869184, 2490716523526845408) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 17179869184, 7973779273400954871) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 17179869184, 6478654019570154047) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 17179869184, 7299189593611257732) WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts. INFO:tensorflow:Calling model_fn. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/tpu/feature_column_v2.py:479: IdentityCategoricalColumn._num_buckets (from tensorflow.python.feature_column.feature_column_v2) is deprecated and will be removed in a future version. Instructions for updating: The old _FeatureColumn APIs are being deprecated. Please use the new FeatureColumn APIs instead. INFO:tensorflow:Querying Tensorflow master (grpc://10.240.1.10:8470) for TPU system metadata. INFO:tensorflow:Found TPU system: INFO:tensorflow:*** Num TPU Cores: 8 INFO:tensorflow:*** Num TPU Workers: 1 INFO:tensorflow:*** Num TPU Cores Per Worker: 8 INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, -1, 6349538157198932596) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 17179869184, 9059152445598865227) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 17179869184, 3922455949451878923) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 17179869184, -6084187114011162725) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 17179869184, 8400191476321474241) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 17179869184, 5484621084550964852) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 17179869184, -8416772895681308377) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 17179869184, 2490716523526845408) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 17179869184, 7973779273400954871) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 17179869184, 6478654019570154047) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 17179869184, 7299189593611257732) WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow/python/training/adagrad.py:77: calling Constant.__init__ (from tensorflow.python.ops.init_ops) with dtype is deprecated and will be removed in a future version. Instructions for updating: Call initializer instance with the dtype argument instead of passing it to the constructor INFO:tensorflow:Bypassing TPUEstimator hook INFO:tensorflow:Done calling model_fn. INFO:tensorflow:TPU job name worker INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py:758: Variable.load (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version. Instructions for updating: Prefer Variable.assign which has equivalent behavior in 2.X. INFO:tensorflow:Initialized dataset iterators in 0 seconds INFO:tensorflow:Installing graceful shutdown hook. INFO:tensorflow:Creating heartbeat manager for ['/job:worker/replica:0/task:0/device:CPU:0'] INFO:tensorflow:Configuring worker heartbeat: shutdown_mode: WAIT_FOR_COORDINATOR INFO:tensorflow:Init TPU system INFO:tensorflow:Initialized TPU in 8 seconds INFO:tensorflow:Starting infeed thread controller. INFO:tensorflow:Starting outfeed thread controller. INFO:tensorflow:Enqueue next (1) batch(es) of data to infeed. INFO:tensorflow:Dequeue next (1) batch(es) of data from outfeed. INFO:tensorflow:Outfeed finished for iteration (0, 0) INFO:tensorflow:loss = 0.6467617, step = 1 INFO:tensorflow:Stop infeed thread controller INFO:tensorflow:Shutting down InfeedController thread. INFO:tensorflow:InfeedController received shutdown signal, stopping. INFO:tensorflow:Infeed thread finished, shutting down. INFO:tensorflow:infeed marked as finished INFO:tensorflow:Stop output thread controller INFO:tensorflow:Shutting down OutfeedController thread. INFO:tensorflow:OutfeedController received shutdown signal, stopping. INFO:tensorflow:Outfeed thread finished, shutting down. INFO:tensorflow:outfeed marked as finished INFO:tensorflow:Shutdown TPU system. INFO:tensorflow:Loss for final step: 0.6467617. INFO:tensorflow:training_loop marked as finished <tensorflow_estimator.python.estimator.tpu.tpu_estimator.TPUEstimator at 0x7f168035b128>
然后,调用 TPUEstimator.evaluate
使用评估数据评估模型
estimator.evaluate(_eval_input_fn, steps=1)
INFO:tensorflow:Could not find trained model in model_dir: /tmp/tmpxc9fm1_q, running initialization to evaluate. INFO:tensorflow:Calling model_fn. INFO:tensorflow:Querying Tensorflow master (grpc://10.240.1.10:8470) for TPU system metadata. INFO:tensorflow:Found TPU system: INFO:tensorflow:*** Num TPU Cores: 8 INFO:tensorflow:*** Num TPU Workers: 1 INFO:tensorflow:*** Num TPU Cores Per Worker: 8 INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, -1, 6349538157198932596) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 17179869184, 9059152445598865227) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 17179869184, 3922455949451878923) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 17179869184, -6084187114011162725) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 17179869184, 8400191476321474241) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 17179869184, 5484621084550964852) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 17179869184, -8416772895681308377) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 17179869184, 2490716523526845408) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 17179869184, 7973779273400954871) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 17179869184, 6478654019570154047) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 17179869184, 7299189593611257732) WARNING:tensorflow:From /tmpfs/src/tf_docs_env/lib/python3.6/site-packages/tensorflow_estimator/python/estimator/tpu/tpu_estimator.py:3406: div (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version. Instructions for updating: Deprecated in favor of operator or tf.math.divide. INFO:tensorflow:Done calling model_fn. INFO:tensorflow:Starting evaluation at 2022-03-02T13:22:48 INFO:tensorflow:TPU job name worker INFO:tensorflow:Graph was finalized. INFO:tensorflow:Running local_init_op. INFO:tensorflow:Done running local_init_op. INFO:tensorflow:Init TPU system INFO:tensorflow:Initialized TPU in 11 seconds INFO:tensorflow:Starting infeed thread controller. INFO:tensorflow:Starting outfeed thread controller. INFO:tensorflow:Initialized dataset iterators in 0 seconds INFO:tensorflow:Enqueue next (1) batch(es) of data to infeed. INFO:tensorflow:Dequeue next (1) batch(es) of data from outfeed. INFO:tensorflow:Outfeed finished for iteration (0, 0) INFO:tensorflow:Evaluation [1/1] INFO:tensorflow:Stop infeed thread controller INFO:tensorflow:Shutting down InfeedController thread. INFO:tensorflow:InfeedController received shutdown signal, stopping. INFO:tensorflow:Infeed thread finished, shutting down. INFO:tensorflow:infeed marked as finished INFO:tensorflow:Stop output thread controller INFO:tensorflow:Shutting down OutfeedController thread. INFO:tensorflow:OutfeedController received shutdown signal, stopping. INFO:tensorflow:Outfeed thread finished, shutting down. INFO:tensorflow:outfeed marked as finished INFO:tensorflow:Shutdown TPU system. INFO:tensorflow:Inference Time : 12.06464s INFO:tensorflow:Finished evaluation at 2022-03-02-13:23:00 INFO:tensorflow:Saving dict for global step 1: global_step = 1, loss = 0.16138805 INFO:tensorflow:evaluation_loop marked as finished {'loss': 0.16138805, 'global_step': 1}
TensorFlow 2:使用 TPUStrategy 在 TPU 上训练嵌入
在 TensorFlow 2 中,要在 TPU 工作节点上进行训练,请使用 tf.distribute.TPUStrategy
以及 Keras API 来定义模型和进行训练/评估。(有关使用 Keras Model.fit 和自定义训练循环(使用 tf.function
和 tf.GradientTape
)的更多示例,请参阅 使用 TPU 指南。)
由于你需要执行一些初始化工作来连接到远程集群并初始化 TPU 工作节点,因此首先创建一个 TPUClusterResolver
来提供集群信息并连接到集群。(在 使用 TPU 指南的“TPU 初始化”部分中了解更多信息。)
cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(tpu='')
tf.config.experimental_connect_to_cluster(cluster_resolver)
tf.tpu.experimental.initialize_tpu_system(cluster_resolver)
print("All devices: ", tf.config.list_logical_devices('TPU'))
INFO:tensorflow:Clearing out eager caches INFO:tensorflow:Clearing out eager caches INFO:tensorflow:Initializing the TPU system: grpc://10.240.1.10:8470 INFO:tensorflow:Initializing the TPU system: grpc://10.240.1.10:8470 INFO:tensorflow:Finished initializing TPU system. INFO:tensorflow:Finished initializing TPU system. All devices: [LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:0', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:1', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:2', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:3', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:4', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:5', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:6', device_type='TPU'), LogicalDevice(name='/job:worker/replica:0/task:0/device:TPU:7', device_type='TPU')]
接下来,准备你的数据。这与你在 TensorFlow 1 示例中创建数据集的方式类似,只是数据集函数现在传递了一个 tf.distribute.InputContext
对象,而不是一个 params
字典。你可以使用此对象来确定本地批次大小(以及此管道所在的宿主,以便你可以正确地划分你的数据)。
- 使用
tfrs.layers.embedding.TPUEmbedding
API 时,在使用Dataset.batch
对数据集进行批处理时,务必包含drop_remainder=True
选项,因为TPUEmbedding
需要固定批次大小。 - 此外,如果评估和训练在同一组设备上进行,则必须使用相同的批次大小。
- 最后,你应该使用
tf.keras.utils.experimental.DatasetCreator
以及特殊输入选项 -experimental_fetch_to_device=False
- 在tf.distribute.InputOptions
(它包含特定于策略的配置)中。这将在下面演示
global_batch_size = 8
def _input_dataset(context: tf.distribute.InputContext):
dataset = tf.data.Dataset.from_tensor_slices((
{"dense_feature": features,
"sparse_feature": tf.SparseTensor(
embedding_features_indices,
embedding_features_values, [1, 2])},
labels))
dataset = dataset.shuffle(10).repeat()
dataset = dataset.batch(
context.get_per_replica_batch_size(global_batch_size),
drop_remainder=True)
return dataset.prefetch(2)
def _eval_dataset(context: tf.distribute.InputContext):
dataset = tf.data.Dataset.from_tensor_slices((
{"dense_feature": eval_features,
"sparse_feature": tf.SparseTensor(
eval_embedding_features_indices,
eval_embedding_features_values, [1, 2])},
eval_labels))
dataset = dataset.repeat()
dataset = dataset.batch(
context.get_per_replica_batch_size(global_batch_size),
drop_remainder=True)
return dataset.prefetch(2)
input_options = tf.distribute.InputOptions(
experimental_fetch_to_device=False)
input_dataset = tf.keras.utils.experimental.DatasetCreator(
_input_dataset, input_options=input_options)
eval_dataset = tf.keras.utils.experimental.DatasetCreator(
_eval_dataset, input_options=input_options)
接下来,准备完数据后,你将创建一个 TPUStrategy
,并在该策略的范围内定义模型、指标和优化器 (Strategy.scope
)。
你应该在 Model.compile
中为 steps_per_execution
选择一个数字,因为它指定了每次 tf.function
调用期间要运行的批次数量,对于性能至关重要。此参数类似于 TPUEstimator
中使用的 iterations_per_loop
。
在 TensorFlow 1 中通过 tf.tpu.experimental.embedding_column
(和 tf.tpu.experimental.shared_embedding_column
)指定的特征和表格配置,可以在 TensorFlow 2 中通过一对配置对象直接指定
(有关更多详细信息,请参阅相关的 API 文档。)
strategy = tf.distribute.TPUStrategy(cluster_resolver)
with strategy.scope():
optimizer = tf.keras.optimizers.Adagrad(learning_rate=0.05)
dense_input = tf.keras.Input(shape=(2,), dtype=tf.float32, batch_size=global_batch_size)
sparse_input = tf.keras.Input(shape=(), dtype=tf.int32, batch_size=global_batch_size)
embedded_input = tfrs.layers.embedding.TPUEmbedding(
feature_config=tf.tpu.experimental.embedding.FeatureConfig(
table=tf.tpu.experimental.embedding.TableConfig(
vocabulary_size=10,
dim=5,
initializer=tf.initializers.TruncatedNormal(mean=0.0, stddev=1)),
name="sparse_input"),
optimizer=optimizer)(sparse_input)
input = tf.keras.layers.Concatenate(axis=1)([dense_input, embedded_input])
result = tf.keras.layers.Dense(1)(input)
model = tf.keras.Model(inputs={"dense_feature": dense_input, "sparse_feature": sparse_input}, outputs=result)
model.compile(optimizer, "mse", steps_per_execution=10)
INFO:tensorflow:Found TPU system: INFO:tensorflow:Found TPU system: INFO:tensorflow:*** Num TPU Cores: 8 INFO:tensorflow:*** Num TPU Cores: 8 INFO:tensorflow:*** Num TPU Workers: 1 INFO:tensorflow:*** Num TPU Workers: 1 INFO:tensorflow:*** Num TPU Cores Per Worker: 8 INFO:tensorflow:*** Num TPU Cores Per Worker: 8 INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:localhost/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:CPU:0, CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:0, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:1, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:2, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:3, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:4, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:5, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:6, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU:7, TPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:TPU_SYSTEM:0, TPU_SYSTEM, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0) INFO:tensorflow:*** Available Device: _DeviceAttributes(/job:worker/replica:0/task:0/device:XLA_CPU:0, XLA_CPU, 0, 0)
有了这些,你就可以使用训练数据集训练模型了
model.fit(input_dataset, epochs=5, steps_per_epoch=10)
Epoch 1/5 10/10 [==============================] - 2s 175ms/step - loss: 0.0057 10/10 [==============================] - 0s 3ms/step - loss: 0.0000e+00 10/10 [==============================] - 0s 3ms/step - loss: 0.0000e+00 10/10 [==============================] - 0s 3ms/step - loss: 0.0000e+00 10/10 [==============================] - 0s 3ms/step - loss: 0.0000e+00 <keras.callbacks.History at 0x7f16803b4a90>
最后,使用评估数据集评估模型
model.evaluate(eval_dataset, steps=1, return_dict=True)
1/1 [==============================] - 1s 1s/step - loss: 12.2297 {'loss': 12.229663848876953}
后续步骤
在 API 文档中了解有关设置特定于 TPU 的嵌入的更多信息
tfrs.layers.embedding.TPUEmbedding
:特别是关于特征和表格配置、设置优化器、创建模型(使用 Keras 函数式 API 或通过 子类化tf.keras.Model
)、训练/评估以及使用tf.saved_model
提供模型服务tf.tpu.experimental.embedding.TableConfig
tf.tpu.experimental.embedding.FeatureConfig
有关 TensorFlow 2 中 TPUStrategy
的更多信息,请考虑以下资源
- 指南:使用 TPU(涵盖使用 Keras
Model.fit
/自定义训练循环以及tf.distribute.TPUStrategy
进行训练,以及有关使用tf.function
提高性能的技巧) - 指南:使用 TensorFlow 进行分布式训练
- 指南:从 TPUEstimator 迁移到 TPUStrategy。
要了解有关自定义训练的更多信息,请参阅
TPU - 谷歌专为机器学习设计的专用 ASIC - 可通过 Google Colab、TPU Research Cloud 和 Cloud TPU 获得。