使用 TensorFlow 隐私报告评估隐私风险

在 TensorFlow.org 上查看 在 Google Colab 中运行 在 GitHub 上查看源代码 下载笔记本

概述

在这个代码实验室中,您将在 CIFAR10 数据集上训练一个简单的图像分类模型,然后使用“成员推理攻击”针对该模型进行评估,以评估攻击者是否能够“猜测”特定样本是否出现在训练集中。您将使用 TF 隐私报告可视化来自多个模型和模型检查点的结果。

设置

import numpy as np
from typing import Tuple
from scipy import special
from sklearn import metrics

import tensorflow as tf

import tensorflow_datasets as tfds

# Set verbosity.
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
from sklearn.exceptions import ConvergenceWarning

import warnings
warnings.simplefilter(action="ignore", category=ConvergenceWarning)
warnings.simplefilter(action="ignore", category=FutureWarning)
2022-12-12 10:19:37.399500: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer.so.7'; dlerror: libnvinfer.so.7: cannot open shared object file: No such file or directory
2022-12-12 10:19:37.399668: W tensorflow/compiler/xla/stream_executor/platform/default/dso_loader.cc:64] Could not load dynamic library 'libnvinfer_plugin.so.7'; dlerror: libnvinfer_plugin.so.7: cannot open shared object file: No such file or directory
2022-12-12 10:19:37.399684: W tensorflow/compiler/tf2tensorrt/utils/py_utils.cc:38] TF-TRT Warning: Cannot dlopen some TensorRT libraries. If you would like to use Nvidia GPU with TensorRT, please make sure the missing libraries mentioned above are installed properly.

安装 TensorFlow Privacy。

pip install tensorflow_privacy
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import membership_inference_attack as mia
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackInputData
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackResultsCollection
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import AttackType
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import PrivacyMetric
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import PrivacyReportMetadata
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack.data_structures import SlicingSpec
from tensorflow_privacy.privacy.privacy_tests.membership_inference_attack import privacy_report
import tensorflow_privacy

训练两个模型,并包含隐私指标

本节训练一对 keras.Model 分类器,用于 CIFAR-10 数据集。在训练过程中,它会收集隐私指标,这些指标将用于在下一节中生成报告。

第一步是定义一些超参数

dataset = 'cifar10'
num_classes = 10
activation = 'relu'
num_conv = 3

batch_size=50
epochs_per_report = 2
total_epochs = 50

lr = 0.001

接下来,加载数据集。此代码中没有与隐私相关的部分。

Loading the dataset.

接下来定义一个函数来构建模型。

使用该函数构建两个三层 CNN 模型。

配置第一个模型使用基本的 SGD 优化器,第二个模型使用差分隐私优化器 (tf_privacy.DPKerasAdamOptimizer),以便您可以比较结果。

model_2layers = small_cnn(
    input_shape, num_classes, num_conv=2, activation=activation)
model_3layers = small_cnn(
    input_shape, num_classes, num_conv=3, activation=activation)

定义一个回调来收集隐私指标

接下来定义一个 keras.callbacks.Callback,以便定期对模型运行一些隐私攻击,并记录结果。

keras fit 方法将在每个训练 epoch 之后调用 on_epoch_end 方法。 n 参数是(从 0 开始的)epoch 编号。

您可以通过编写一个循环来实现此过程,该循环重复调用 Model.fit(..., epochs=epochs_per_report) 并运行攻击代码。回调在这里使用只是因为它在训练逻辑和隐私评估逻辑之间提供了清晰的分隔。

class PrivacyMetrics(tf.keras.callbacks.Callback):
  def __init__(self, epochs_per_report, model_name):
    self.epochs_per_report = epochs_per_report
    self.model_name = model_name
    self.attack_results = []

  def on_epoch_end(self, epoch, logs=None):
    epoch = epoch+1

    if epoch % self.epochs_per_report != 0:
      return

    print(f'\nRunning privacy report for epoch: {epoch}\n')

    logits_train = self.model.predict(x_train, batch_size=batch_size)
    logits_test = self.model.predict(x_test, batch_size=batch_size)

    prob_train = special.softmax(logits_train, axis=1)
    prob_test = special.softmax(logits_test, axis=1)

    # Add metadata to generate a privacy report.
    privacy_report_metadata = PrivacyReportMetadata(
        # Show the validation accuracy on the plot
        # It's what you send to train_accuracy that gets plotted.
        accuracy_train=logs['val_accuracy'], 
        accuracy_test=logs['val_accuracy'],
        epoch_num=epoch,
        model_variant_label=self.model_name)

    attack_results = mia.run_attacks(
        AttackInputData(
            labels_train=y_train_indices[:, 0],
            labels_test=y_test_indices[:, 0],
            probs_train=prob_train,
            probs_test=prob_test),
        SlicingSpec(entire_dataset=True, by_class=True),
        attack_types=(AttackType.THRESHOLD_ATTACK,
                      AttackType.LOGISTIC_REGRESSION),
        privacy_report_metadata=privacy_report_metadata)

    self.attack_results.append(attack_results)

训练模型

下一个代码块训练两个模型。 all_reports 列表用于收集来自所有模型训练运行的所有结果。各个报告使用 model_name 进行标记,因此不会混淆哪个模型生成了哪个报告。

all_reports = []
callback = PrivacyMetrics(epochs_per_report, "2 Layers")
history = model_2layers.fit(
      x_train,
      y_train,
      batch_size=batch_size,
      epochs=total_epochs,
      validation_data=(x_test, y_test),
      callbacks=[callback],
      shuffle=True)

all_reports.extend(callback.attack_results)
Epoch 1/50
1000/1000 [==============================] - 9s 5ms/step - loss: 1.5649 - accuracy: 0.4351 - val_loss: 1.2904 - val_accuracy: 0.5383
Epoch 2/50
 989/1000 [============================>.] - ETA: 0s - loss: 1.2361 - accuracy: 0.5654
Running privacy report for epoch: 2

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 1.2357 - accuracy: 0.5652 - val_loss: 1.2187 - val_accuracy: 0.5630
Epoch 3/50
1000/1000 [==============================] - 4s 4ms/step - loss: 1.1003 - accuracy: 0.6162 - val_loss: 1.0723 - val_accuracy: 0.6251
Epoch 4/50
 989/1000 [============================>.] - ETA: 0s - loss: 1.0168 - accuracy: 0.6453
Running privacy report for epoch: 4

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 19s 19ms/step - loss: 1.0172 - accuracy: 0.6451 - val_loss: 1.0015 - val_accuracy: 0.6496
Epoch 5/50
1000/1000 [==============================] - 4s 4ms/step - loss: 0.9590 - accuracy: 0.6676 - val_loss: 1.0388 - val_accuracy: 0.6423
Epoch 6/50
 994/1000 [============================>.] - ETA: 0s - loss: 0.9149 - accuracy: 0.6838
Running privacy report for epoch: 6

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 19s 19ms/step - loss: 0.9153 - accuracy: 0.6836 - val_loss: 0.9783 - val_accuracy: 0.6641
Epoch 7/50
1000/1000 [==============================] - 4s 4ms/step - loss: 0.8771 - accuracy: 0.6975 - val_loss: 0.9397 - val_accuracy: 0.6778
Epoch 8/50
 989/1000 [============================>.] - ETA: 0s - loss: 0.8443 - accuracy: 0.7055
Running privacy report for epoch: 8

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 19s 19ms/step - loss: 0.8452 - accuracy: 0.7051 - val_loss: 0.9455 - val_accuracy: 0.6803
Epoch 9/50
1000/1000 [==============================] - 4s 4ms/step - loss: 0.8066 - accuracy: 0.7198 - val_loss: 0.9285 - val_accuracy: 0.6818
Epoch 10/50
 991/1000 [============================>.] - ETA: 0s - loss: 0.7846 - accuracy: 0.7262
Running privacy report for epoch: 10

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 19s 19ms/step - loss: 0.7843 - accuracy: 0.7264 - val_loss: 0.9228 - val_accuracy: 0.6852
Epoch 11/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.7545 - accuracy: 0.7370 - val_loss: 0.9160 - val_accuracy: 0.6894
Epoch 12/50
 989/1000 [============================>.] - ETA: 0s - loss: 0.7280 - accuracy: 0.7468
Running privacy report for epoch: 12

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 19s 19ms/step - loss: 0.7280 - accuracy: 0.7468 - val_loss: 0.8930 - val_accuracy: 0.7064
Epoch 13/50
1000/1000 [==============================] - 4s 4ms/step - loss: 0.7038 - accuracy: 0.7532 - val_loss: 0.9070 - val_accuracy: 0.6988
Epoch 14/50
 990/1000 [============================>.] - ETA: 0s - loss: 0.6826 - accuracy: 0.7615
Running privacy report for epoch: 14

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 19s 19ms/step - loss: 0.6826 - accuracy: 0.7613 - val_loss: 0.9246 - val_accuracy: 0.6932
Epoch 15/50
1000/1000 [==============================] - 4s 4ms/step - loss: 0.6600 - accuracy: 0.7696 - val_loss: 0.9641 - val_accuracy: 0.6936
Epoch 16/50
 991/1000 [============================>.] - ETA: 0s - loss: 0.6447 - accuracy: 0.7763
Running privacy report for epoch: 16

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 19s 19ms/step - loss: 0.6447 - accuracy: 0.7760 - val_loss: 0.9312 - val_accuracy: 0.7003
Epoch 17/50
1000/1000 [==============================] - 4s 4ms/step - loss: 0.6262 - accuracy: 0.7814 - val_loss: 0.9573 - val_accuracy: 0.6950
Epoch 18/50
 989/1000 [============================>.] - ETA: 0s - loss: 0.6086 - accuracy: 0.7869
Running privacy report for epoch: 18

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 0.6082 - accuracy: 0.7868 - val_loss: 0.9419 - val_accuracy: 0.7011
Epoch 19/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.5935 - accuracy: 0.7921 - val_loss: 0.9571 - val_accuracy: 0.6925
Epoch 20/50
 988/1000 [============================>.] - ETA: 0s - loss: 0.5741 - accuracy: 0.7998
Running privacy report for epoch: 20

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 19s 19ms/step - loss: 0.5743 - accuracy: 0.7995 - val_loss: 0.9609 - val_accuracy: 0.6989
Epoch 21/50
1000/1000 [==============================] - 4s 4ms/step - loss: 0.5621 - accuracy: 0.8033 - val_loss: 0.9695 - val_accuracy: 0.6963
Epoch 22/50
 993/1000 [============================>.] - ETA: 0s - loss: 0.5452 - accuracy: 0.8095
Running privacy report for epoch: 22

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 19s 19ms/step - loss: 0.5457 - accuracy: 0.8093 - val_loss: 0.9815 - val_accuracy: 0.6956
Epoch 23/50
1000/1000 [==============================] - 4s 4ms/step - loss: 0.5383 - accuracy: 0.8110 - val_loss: 0.9856 - val_accuracy: 0.6919
Epoch 24/50
 992/1000 [============================>.] - ETA: 0s - loss: 0.5219 - accuracy: 0.8162
Running privacy report for epoch: 24

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 19s 19ms/step - loss: 0.5219 - accuracy: 0.8162 - val_loss: 1.0300 - val_accuracy: 0.6919
Epoch 25/50
1000/1000 [==============================] - 4s 4ms/step - loss: 0.5085 - accuracy: 0.8195 - val_loss: 1.0299 - val_accuracy: 0.6950
Epoch 26/50
 996/1000 [============================>.] - ETA: 0s - loss: 0.5001 - accuracy: 0.8234
Running privacy report for epoch: 26

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 0.5001 - accuracy: 0.8234 - val_loss: 1.0387 - val_accuracy: 0.6934
Epoch 27/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.4877 - accuracy: 0.8275 - val_loss: 1.0503 - val_accuracy: 0.6883
Epoch 28/50
 989/1000 [============================>.] - ETA: 0s - loss: 0.4764 - accuracy: 0.8327
Running privacy report for epoch: 28

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 0.4768 - accuracy: 0.8326 - val_loss: 1.0804 - val_accuracy: 0.6926
Epoch 29/50
1000/1000 [==============================] - 4s 4ms/step - loss: 0.4560 - accuracy: 0.8401 - val_loss: 1.1016 - val_accuracy: 0.6916
Epoch 30/50
 992/1000 [============================>.] - ETA: 0s - loss: 0.4502 - accuracy: 0.8408
Running privacy report for epoch: 30

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 19s 19ms/step - loss: 0.4512 - accuracy: 0.8405 - val_loss: 1.1585 - val_accuracy: 0.6826
Epoch 31/50
1000/1000 [==============================] - 4s 4ms/step - loss: 0.4377 - accuracy: 0.8435 - val_loss: 1.1852 - val_accuracy: 0.6817
Epoch 32/50
 989/1000 [============================>.] - ETA: 0s - loss: 0.4343 - accuracy: 0.8448
Running privacy report for epoch: 32

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 0.4346 - accuracy: 0.8446 - val_loss: 1.1789 - val_accuracy: 0.6828
Epoch 33/50
1000/1000 [==============================] - 4s 4ms/step - loss: 0.4200 - accuracy: 0.8493 - val_loss: 1.1821 - val_accuracy: 0.6839
Epoch 34/50
 989/1000 [============================>.] - ETA: 0s - loss: 0.4097 - accuracy: 0.8533
Running privacy report for epoch: 34

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 0.4103 - accuracy: 0.8532 - val_loss: 1.1683 - val_accuracy: 0.6915
Epoch 35/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.3989 - accuracy: 0.8582 - val_loss: 1.2722 - val_accuracy: 0.6754
Epoch 36/50
 992/1000 [============================>.] - ETA: 0s - loss: 0.3927 - accuracy: 0.8600
Running privacy report for epoch: 36

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 0.3935 - accuracy: 0.8597 - val_loss: 1.2278 - val_accuracy: 0.6824
Epoch 37/50
1000/1000 [==============================] - 4s 4ms/step - loss: 0.3800 - accuracy: 0.8641 - val_loss: 1.3000 - val_accuracy: 0.6755
Epoch 38/50
 996/1000 [============================>.] - ETA: 0s - loss: 0.3741 - accuracy: 0.8655
Running privacy report for epoch: 38

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 19s 19ms/step - loss: 0.3742 - accuracy: 0.8655 - val_loss: 1.2690 - val_accuracy: 0.6831
Epoch 39/50
1000/1000 [==============================] - 4s 4ms/step - loss: 0.3626 - accuracy: 0.8710 - val_loss: 1.3669 - val_accuracy: 0.6685
Epoch 40/50
 989/1000 [============================>.] - ETA: 0s - loss: 0.3553 - accuracy: 0.8716
Running privacy report for epoch: 40

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 0.3559 - accuracy: 0.8714 - val_loss: 1.3724 - val_accuracy: 0.6762
Epoch 41/50
1000/1000 [==============================] - 4s 4ms/step - loss: 0.3463 - accuracy: 0.8763 - val_loss: 1.4895 - val_accuracy: 0.6636
Epoch 42/50
 990/1000 [============================>.] - ETA: 0s - loss: 0.3324 - accuracy: 0.8809
Running privacy report for epoch: 42

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 0.3326 - accuracy: 0.8808 - val_loss: 1.4031 - val_accuracy: 0.6827
Epoch 43/50
1000/1000 [==============================] - 4s 4ms/step - loss: 0.3343 - accuracy: 0.8802 - val_loss: 1.3989 - val_accuracy: 0.6731
Epoch 44/50
 991/1000 [============================>.] - ETA: 0s - loss: 0.3278 - accuracy: 0.8814
Running privacy report for epoch: 44

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 19s 19ms/step - loss: 0.3276 - accuracy: 0.8816 - val_loss: 1.4769 - val_accuracy: 0.6752
Epoch 45/50
1000/1000 [==============================] - 5s 4ms/step - loss: 0.3167 - accuracy: 0.8859 - val_loss: 1.4796 - val_accuracy: 0.6738
Epoch 46/50
 988/1000 [============================>.] - ETA: 0s - loss: 0.3098 - accuracy: 0.8901
Running privacy report for epoch: 46

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 19s 19ms/step - loss: 0.3104 - accuracy: 0.8899 - val_loss: 1.4881 - val_accuracy: 0.6705
Epoch 47/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.3008 - accuracy: 0.8912 - val_loss: 1.5639 - val_accuracy: 0.6753
Epoch 48/50
 989/1000 [============================>.] - ETA: 0s - loss: 0.2926 - accuracy: 0.8942
Running privacy report for epoch: 48

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 0.2929 - accuracy: 0.8943 - val_loss: 1.5777 - val_accuracy: 0.6676
Epoch 49/50
1000/1000 [==============================] - 4s 4ms/step - loss: 0.2943 - accuracy: 0.8924 - val_loss: 1.6487 - val_accuracy: 0.6646
Epoch 50/50
 989/1000 [============================>.] - ETA: 0s - loss: 0.2796 - accuracy: 0.8982
Running privacy report for epoch: 50

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 19s 19ms/step - loss: 0.2795 - accuracy: 0.8981 - val_loss: 1.6146 - val_accuracy: 0.6679
callback = PrivacyMetrics(epochs_per_report, "3 Layers")
history = model_3layers.fit(
      x_train,
      y_train,
      batch_size=batch_size,
      epochs=total_epochs,
      validation_data=(x_test, y_test),
      callbacks=[callback],
      shuffle=True)

all_reports.extend(callback.attack_results)
Epoch 1/50
1000/1000 [==============================] - 7s 6ms/step - loss: 1.6493 - accuracy: 0.3968 - val_loss: 1.4011 - val_accuracy: 0.4976
Epoch 2/50
 995/1000 [============================>.] - ETA: 0s - loss: 1.3303 - accuracy: 0.5235
Running privacy report for epoch: 2

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 1.3302 - accuracy: 0.5236 - val_loss: 1.2646 - val_accuracy: 0.5475
Epoch 3/50
1000/1000 [==============================] - 5s 5ms/step - loss: 1.2050 - accuracy: 0.5712 - val_loss: 1.1931 - val_accuracy: 0.5687
Epoch 4/50
 992/1000 [============================>.] - ETA: 0s - loss: 1.1274 - accuracy: 0.6006
Running privacy report for epoch: 4

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 1.1279 - accuracy: 0.6006 - val_loss: 1.1270 - val_accuracy: 0.6036
Epoch 5/50
1000/1000 [==============================] - 5s 5ms/step - loss: 1.0594 - accuracy: 0.6287 - val_loss: 1.0538 - val_accuracy: 0.6290
Epoch 6/50
 993/1000 [============================>.] - ETA: 0s - loss: 1.0093 - accuracy: 0.6466
Running privacy report for epoch: 6

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 1.0090 - accuracy: 0.6466 - val_loss: 1.0629 - val_accuracy: 0.6370
Epoch 7/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.9690 - accuracy: 0.6632 - val_loss: 1.0139 - val_accuracy: 0.6395
Epoch 8/50
 999/1000 [============================>.] - ETA: 0s - loss: 0.9303 - accuracy: 0.6738
Running privacy report for epoch: 8

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 19s 19ms/step - loss: 0.9303 - accuracy: 0.6737 - val_loss: 0.9682 - val_accuracy: 0.6622
Epoch 9/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.9035 - accuracy: 0.6831 - val_loss: 1.0037 - val_accuracy: 0.6497
Epoch 10/50
 992/1000 [============================>.] - ETA: 0s - loss: 0.8711 - accuracy: 0.6972
Running privacy report for epoch: 10

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 0.8712 - accuracy: 0.6971 - val_loss: 0.9455 - val_accuracy: 0.6727
Epoch 11/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.8457 - accuracy: 0.7061 - val_loss: 0.9383 - val_accuracy: 0.6731
Epoch 12/50
 989/1000 [============================>.] - ETA: 0s - loss: 0.8274 - accuracy: 0.7109
Running privacy report for epoch: 12

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 19s 20ms/step - loss: 0.8277 - accuracy: 0.7107 - val_loss: 0.9382 - val_accuracy: 0.6737
Epoch 13/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.8013 - accuracy: 0.7194 - val_loss: 0.9203 - val_accuracy: 0.6827
Epoch 14/50
 992/1000 [============================>.] - ETA: 0s - loss: 0.7849 - accuracy: 0.7259
Running privacy report for epoch: 14

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 19s 19ms/step - loss: 0.7849 - accuracy: 0.7259 - val_loss: 0.9031 - val_accuracy: 0.6917
Epoch 15/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.7728 - accuracy: 0.7297 - val_loss: 0.9353 - val_accuracy: 0.6772
Epoch 16/50
 999/1000 [============================>.] - ETA: 0s - loss: 0.7505 - accuracy: 0.7377
Running privacy report for epoch: 16

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 19s 19ms/step - loss: 0.7504 - accuracy: 0.7377 - val_loss: 0.8779 - val_accuracy: 0.7059
Epoch 17/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.7352 - accuracy: 0.7434 - val_loss: 0.8919 - val_accuracy: 0.6940
Epoch 18/50
 991/1000 [============================>.] - ETA: 0s - loss: 0.7246 - accuracy: 0.7456
Running privacy report for epoch: 18

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 19s 19ms/step - loss: 0.7237 - accuracy: 0.7459 - val_loss: 0.8733 - val_accuracy: 0.7102
Epoch 19/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.7058 - accuracy: 0.7508 - val_loss: 0.8981 - val_accuracy: 0.6971
Epoch 20/50
 992/1000 [============================>.] - ETA: 0s - loss: 0.6964 - accuracy: 0.7544
Running privacy report for epoch: 20

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 0.6964 - accuracy: 0.7545 - val_loss: 0.8978 - val_accuracy: 0.6985
Epoch 21/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.6821 - accuracy: 0.7609 - val_loss: 0.9203 - val_accuracy: 0.6953
Epoch 22/50
 999/1000 [============================>.] - ETA: 0s - loss: 0.6713 - accuracy: 0.7611
Running privacy report for epoch: 22

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 0.6712 - accuracy: 0.7612 - val_loss: 0.8934 - val_accuracy: 0.7026
Epoch 23/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.6609 - accuracy: 0.7691 - val_loss: 0.8827 - val_accuracy: 0.7083
Epoch 24/50
 990/1000 [============================>.] - ETA: 0s - loss: 0.6496 - accuracy: 0.7717
Running privacy report for epoch: 24

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 0.6497 - accuracy: 0.7715 - val_loss: 0.9050 - val_accuracy: 0.7000
Epoch 25/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.6384 - accuracy: 0.7756 - val_loss: 0.9388 - val_accuracy: 0.6930
Epoch 26/50
1000/1000 [==============================] - ETA: 0s - loss: 0.6330 - accuracy: 0.7776
Running privacy report for epoch: 26

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 0.6330 - accuracy: 0.7776 - val_loss: 0.9033 - val_accuracy: 0.7001
Epoch 27/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.6236 - accuracy: 0.7811 - val_loss: 0.8921 - val_accuracy: 0.7045
Epoch 28/50
 993/1000 [============================>.] - ETA: 0s - loss: 0.6126 - accuracy: 0.7845
Running privacy report for epoch: 28

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 0.6132 - accuracy: 0.7844 - val_loss: 0.9148 - val_accuracy: 0.7010
Epoch 29/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.6057 - accuracy: 0.7846 - val_loss: 0.9259 - val_accuracy: 0.6993
Epoch 30/50
 994/1000 [============================>.] - ETA: 0s - loss: 0.5954 - accuracy: 0.7885
Running privacy report for epoch: 30

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 0.5960 - accuracy: 0.7883 - val_loss: 0.9197 - val_accuracy: 0.7083
Epoch 31/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.5872 - accuracy: 0.7920 - val_loss: 0.9272 - val_accuracy: 0.7102
Epoch 32/50
 989/1000 [============================>.] - ETA: 0s - loss: 0.5803 - accuracy: 0.7940
Running privacy report for epoch: 32

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 0.5798 - accuracy: 0.7943 - val_loss: 0.9030 - val_accuracy: 0.7069
Epoch 33/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.5740 - accuracy: 0.7965 - val_loss: 0.9242 - val_accuracy: 0.7097
Epoch 34/50
 992/1000 [============================>.] - ETA: 0s - loss: 0.5646 - accuracy: 0.8005
Running privacy report for epoch: 34

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 0.5647 - accuracy: 0.8006 - val_loss: 0.9156 - val_accuracy: 0.7129
Epoch 35/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.5574 - accuracy: 0.8013 - val_loss: 0.9191 - val_accuracy: 0.7082
Epoch 36/50
 989/1000 [============================>.] - ETA: 0s - loss: 0.5597 - accuracy: 0.8022
Running privacy report for epoch: 36

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 0.5592 - accuracy: 0.8023 - val_loss: 0.9431 - val_accuracy: 0.7045
Epoch 37/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.5490 - accuracy: 0.8067 - val_loss: 0.9823 - val_accuracy: 0.6963
Epoch 38/50
 993/1000 [============================>.] - ETA: 0s - loss: 0.5400 - accuracy: 0.8086
Running privacy report for epoch: 38

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 0.5402 - accuracy: 0.8085 - val_loss: 0.9820 - val_accuracy: 0.6983
Epoch 39/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.5368 - accuracy: 0.8102 - val_loss: 0.9567 - val_accuracy: 0.7085
Epoch 40/50
 992/1000 [============================>.] - ETA: 0s - loss: 0.5313 - accuracy: 0.8134
Running privacy report for epoch: 40

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 0.5323 - accuracy: 0.8130 - val_loss: 0.9361 - val_accuracy: 0.7132
Epoch 41/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.5299 - accuracy: 0.8123 - val_loss: 0.9987 - val_accuracy: 0.7062
Epoch 42/50
 992/1000 [============================>.] - ETA: 0s - loss: 0.5230 - accuracy: 0.8140
Running privacy report for epoch: 42

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 0.5232 - accuracy: 0.8140 - val_loss: 0.9999 - val_accuracy: 0.7019
Epoch 43/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.5143 - accuracy: 0.8169 - val_loss: 0.9726 - val_accuracy: 0.7089
Epoch 44/50
 995/1000 [============================>.] - ETA: 0s - loss: 0.5082 - accuracy: 0.8195
Running privacy report for epoch: 44

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 0.5086 - accuracy: 0.8194 - val_loss: 1.0347 - val_accuracy: 0.6967
Epoch 45/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.5071 - accuracy: 0.8188 - val_loss: 0.9906 - val_accuracy: 0.6986
Epoch 46/50
 995/1000 [============================>.] - ETA: 0s - loss: 0.4977 - accuracy: 0.8206
Running privacy report for epoch: 46

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 0.4980 - accuracy: 0.8205 - val_loss: 0.9928 - val_accuracy: 0.7034
Epoch 47/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.4928 - accuracy: 0.8234 - val_loss: 1.0239 - val_accuracy: 0.7011
Epoch 48/50
 997/1000 [============================>.] - ETA: 0s - loss: 0.4910 - accuracy: 0.8253
Running privacy report for epoch: 48

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 21s 21ms/step - loss: 0.4911 - accuracy: 0.8253 - val_loss: 1.0298 - val_accuracy: 0.6963
Epoch 49/50
1000/1000 [==============================] - 5s 5ms/step - loss: 0.4884 - accuracy: 0.8270 - val_loss: 1.0199 - val_accuracy: 0.7032
Epoch 50/50
 994/1000 [============================>.] - ETA: 0s - loss: 0.4860 - accuracy: 0.8268
Running privacy report for epoch: 50

1000/1000 [==============================] - 2s 2ms/step
200/200 [==============================] - 0s 2ms/step
1000/1000 [==============================] - 20s 20ms/step - loss: 0.4857 - accuracy: 0.8268 - val_loss: 1.0268 - val_accuracy: 0.7100

Epoch 图表

您可以通过定期(例如,每 5 个 epoch)探测模型来可视化训练模型时隐私风险是如何发生的,您可以选择性能/隐私权衡最佳的时间点。

使用 TF 隐私成员推理攻击模块生成 AttackResults。这些 AttackResults 会组合到 AttackResultsCollection 中。TF 隐私报告旨在分析提供的 AttackResultsCollection

results = AttackResultsCollection(all_reports)
privacy_metrics = (PrivacyMetric.AUC, PrivacyMetric.ATTACKER_ADVANTAGE)
epoch_plot = privacy_report.plot_by_epochs(
    results, privacy_metrics=privacy_metrics)

png

请注意,作为一项规则,隐私漏洞往往会随着 epoch 数量的增加而增加。这在模型变体以及不同的攻击者类型中都是如此。

两层模型(具有较少的卷积层)通常比它们的三层模型对应物更容易受到攻击。

现在让我们看看模型性能如何随着隐私风险的变化而变化。

隐私与效用

privacy_metrics = (PrivacyMetric.AUC, PrivacyMetric.ATTACKER_ADVANTAGE)
utility_privacy_plot = privacy_report.plot_privacy_vs_accuracy(
    results, privacy_metrics=privacy_metrics)

for axis in utility_privacy_plot.axes:
  axis.set_xlabel('Validation accuracy')

png

三层模型(可能是由于参数过多)只实现了 0.85 的训练准确率。两层模型在该隐私风险水平下实现了大致相同的性能,但它们的准确率持续提高。

您还可以看到两层模型的线条变得更加陡峭。这意味着训练准确率的额外边际收益是以巨大的隐私漏洞为代价的。

本教程到此结束。您可以随意分析自己的结果。