量化感知训练综合指南

在 TensorFlow.org 上查看 在 Google Colab 中运行 在 GitHub 上查看源代码 下载笔记本

欢迎使用 Keras 量化感知训练综合指南。

此页面记录了各种用例,并展示了如何针对每种用例使用 API。了解所需 API 后,请在 API 文档 中查找参数和底层详细信息。

  • 如果您想了解量化感知训练的优势和支持的内容,请参阅 概述
  • 如需了解单一端到端示例,请参阅 量化感知训练示例

涵盖以下用例

  • 按照以下步骤部署具有 8 位量化的模型。
    • 定义量化感知模型。
    • 仅适用于 Keras HDF5 模型,使用特殊的检查点和反序列化逻辑。否则,训练是标准的。
    • 从量化感知模型创建量化模型。
  • 尝试量化。
    • 任何实验都没有受支持的部署路径。
    • 自定义 Keras 层属于实验范畴。

设置

为了查找所需的 API 并了解目的,您可以运行此部分,但可以跳过阅读。

! pip install -q tensorflow
! pip install -q tensorflow-model-optimization

import tensorflow as tf
import numpy as np
import tensorflow_model_optimization as tfmot
import tf_keras as keras

import tempfile

input_shape = [20]
x_train = np.random.randn(1, 20).astype(np.float32)
y_train = keras.utils.to_categorical(np.random.randn(1), num_classes=20)

def setup_model():
  model = keras.Sequential([
      keras.layers.Dense(20, input_shape=input_shape),
      keras.layers.Flatten()
  ])
  return model

def setup_pretrained_weights():
  model= setup_model()

  model.compile(
      loss=keras.losses.categorical_crossentropy,
      optimizer='adam',
      metrics=['accuracy']
  )

  model.fit(x_train, y_train)

  _, pretrained_weights = tempfile.mkstemp('.tf')

  model.save_weights(pretrained_weights)

  return pretrained_weights

def setup_pretrained_model():
  model = setup_model()
  pretrained_weights = setup_pretrained_weights()
  model.load_weights(pretrained_weights)
  return model

setup_model()
pretrained_weights = setup_pretrained_weights()
2024-03-09 12:29:37.526315: E external/local_xla/xla/stream_executor/cuda/cuda_driver.cc:282] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected

定义量化感知模型

通过以下方式定义模型,可以找到在 概述页面 中列出的后端部署的可用路径。默认情况下,使用 8 位量化。

量化整个模型

您的用例

  • 不支持子类化模型。

提高模型精度的提示

  • 尝试“量化部分层”以跳过量化精度下降幅度最大的层。
  • 通常,使用量化感知训练进行微调比从头开始训练效果更好。

要使整个模型感知量化,请将 tfmot.quantization.keras.quantize_model 应用于模型。

base_model = setup_model()
base_model.load_weights(pretrained_weights) # optional but recommended for model accuracy

quant_aware_model = tfmot.quantization.keras.quantize_model(base_model)
quant_aware_model.summary()
Model: "sequential_2"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 quantize_layer (QuantizeLa  (None, 20)                3         
 yer)                                                            
                                                                 
 quant_dense_2 (QuantizeWra  (None, 20)                425       
 pperV2)                                                         
                                                                 
 quant_flatten_2 (QuantizeW  (None, 20)                1         
 rapperV2)                                                       
                                                                 
=================================================================
Total params: 429 (1.68 KB)
Trainable params: 420 (1.64 KB)
Non-trainable params: 9 (36.00 Byte)
_________________________________________________________________

量化部分层

量化模型会对精度产生负面影响。您可以选择性地量化模型的层,以探索精度、速度和模型大小之间的权衡。

您的用例

  • 要部署到仅适用于完全量化模型的后端(例如 EdgeTPU v1、大多数 DSP),请尝试“量化整个模型”。

提高模型精度的提示

  • 通常,使用量化感知训练进行微调比从头开始训练效果更好。
  • 尝试量化后层,而不是前层。
  • 避免量化关键层(例如注意力机制)。

在以下示例中,仅量化 Dense 层。

# Create a base model
base_model = setup_model()
base_model.load_weights(pretrained_weights) # optional but recommended for model accuracy

# Helper function uses `quantize_annotate_layer` to annotate that only the 
# Dense layers should be quantized.
def apply_quantization_to_dense(layer):
  if isinstance(layer, keras.layers.Dense):
    return tfmot.quantization.keras.quantize_annotate_layer(layer)
  return layer

# Use `keras.models.clone_model` to apply `apply_quantization_to_dense` 
# to the layers of the model.
annotated_model = keras.models.clone_model(
    base_model,
    clone_function=apply_quantization_to_dense,
)

# Now that the Dense layers are annotated,
# `quantize_apply` actually makes the model quantization aware.
quant_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model)
quant_aware_model.summary()
WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://tensorflowcn.cn/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function.
WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://tensorflowcn.cn/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function.
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._iterations
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._iterations
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._learning_rate
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._learning_rate
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4
Model: "sequential_3"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 quantize_layer_1 (Quantize  (None, 20)                3         
 Layer)                                                          
                                                                 
 quant_dense_3 (QuantizeWra  (None, 20)                425       
 pperV2)                                                         
                                                                 
 flatten_3 (Flatten)         (None, 20)                0         
                                                                 
=================================================================
Total params: 428 (1.67 KB)
Trainable params: 420 (1.64 KB)
Non-trainable params: 8 (32.00 Byte)
_________________________________________________________________

虽然此示例使用层的类型来决定要量化什么,但量化特定层的最简单方法是设置其 name 属性,并在 clone_function 中查找该名称。

print(base_model.layers[0].name)
dense_3

可读性更强,但模型精度可能较低

这与使用量化感知训练进行微调不兼容,这就是为什么它可能不如以上示例准确的原因。

函数示例

# Use `quantize_annotate_layer` to annotate that the `Dense` layer
# should be quantized.
i = keras.Input(shape=(20,))
x = tfmot.quantization.keras.quantize_annotate_layer(keras.layers.Dense(10))(i)
o = keras.layers.Flatten()(x)
annotated_model = keras.Model(inputs=i, outputs=o)

# Use `quantize_apply` to actually make the model quantization aware.
quant_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model)

# For deployment purposes, the tool adds `QuantizeLayer` after `InputLayer` so that the
# quantized model can take in float inputs instead of only uint8.
quant_aware_model.summary()
Model: "model"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 input_1 (InputLayer)        [(None, 20)]              0         
                                                                 
 quantize_layer_2 (Quantize  (None, 20)                3         
 Layer)                                                          
                                                                 
 quant_dense_4 (QuantizeWra  (None, 10)                215       
 pperV2)                                                         
                                                                 
 flatten_4 (Flatten)         (None, 10)                0         
                                                                 
=================================================================
Total params: 218 (872.00 Byte)
Trainable params: 210 (840.00 Byte)
Non-trainable params: 8 (32.00 Byte)
_________________________________________________________________

顺序示例

# Use `quantize_annotate_layer` to annotate that the `Dense` layer
# should be quantized.
annotated_model = keras.Sequential([
  tfmot.quantization.keras.quantize_annotate_layer(keras.layers.Dense(20, input_shape=input_shape)),
  keras.layers.Flatten()
])

# Use `quantize_apply` to actually make the model quantization aware.
quant_aware_model = tfmot.quantization.keras.quantize_apply(annotated_model)

quant_aware_model.summary()
Model: "sequential_4"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 quantize_layer_3 (Quantize  (None, 20)                3         
 Layer)                                                          
                                                                 
 quant_dense_5 (QuantizeWra  (None, 20)                425       
 pperV2)                                                         
                                                                 
 flatten_5 (Flatten)         (None, 20)                0         
                                                                 
=================================================================
Total params: 428 (1.67 KB)
Trainable params: 420 (1.64 KB)
Non-trainable params: 8 (32.00 Byte)
_________________________________________________________________

检查点和反序列化

您的用例:此代码仅适用于 HDF5 模型格式(不适用于 HDF5 权重或其他格式)。

# Define the model.
base_model = setup_model()
base_model.load_weights(pretrained_weights) # optional but recommended for model accuracy
quant_aware_model = tfmot.quantization.keras.quantize_model(base_model)

# Save or checkpoint the model.
_, keras_model_file = tempfile.mkstemp('.h5')
quant_aware_model.save(keras_model_file)

# `quantize_scope` is needed for deserializing HDF5 models.
with tfmot.quantization.keras.quantize_scope():
  loaded_model = keras.models.load_model(keras_model_file)

loaded_model.summary()
WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://tensorflowcn.cn/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function.
WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://tensorflowcn.cn/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function.
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._iterations
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._iterations
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._learning_rate
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._learning_rate
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tf_keras/src/engine/training.py:3098: UserWarning: You are saving your model as an HDF5 file via `model.save()`. This file format is considered legacy. We recommend using instead the native TF-Keras format, e.g. `model.save('my_model.keras')`.
  saving_api.save_model(
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
WARNING:tensorflow:No training configuration found in the save file, so the model was *not* compiled. Compile it manually.
WARNING:tensorflow:No training configuration found in the save file, so the model was *not* compiled. Compile it manually.
Model: "sequential_5"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 quantize_layer_4 (Quantize  (None, 20)                3         
 Layer)                                                          
                                                                 
 quant_dense_6 (QuantizeWra  (None, 20)                425       
 pperV2)                                                         
                                                                 
 quant_flatten_6 (QuantizeW  (None, 20)                1         
 rapperV2)                                                       
                                                                 
=================================================================
Total params: 429 (1.68 KB)
Trainable params: 420 (1.64 KB)
Non-trainable params: 9 (36.00 Byte)
_________________________________________________________________

创建和部署量化模型

通常,参考您将使用的部署后端的文档。

这是 TFLite 后端的示例。

base_model = setup_pretrained_model()
quant_aware_model = tfmot.quantization.keras.quantize_model(base_model)

# Typically you train the model here.

converter = tf.lite.TFLiteConverter.from_keras_model(quant_aware_model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]

quantized_tflite_model = converter.convert()
1/1 [==============================] - 1s 684ms/step - loss: 16.1181 - accuracy: 0.0000e+00
WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://tensorflowcn.cn/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function.
WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://tensorflowcn.cn/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function.
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._iterations
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._iterations
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._learning_rate
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._learning_rate
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4
INFO:tensorflow:Assets written to: /tmpfs/tmp/tmpyo_u4d_8/assets
INFO:tensorflow:Assets written to: /tmpfs/tmp/tmpyo_u4d_8/assets
/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tensorflow/lite/python/convert.py:964: UserWarning: Statistics for quantized inputs were expected, but not specified; continuing anyway.
  warnings.warn(
WARNING: All log messages before absl::InitializeLog() is called are written to STDERR
W0000 00:00:1709987395.907073   23976 tf_tfl_flatbuffer_helpers.cc:390] Ignored output_format.
W0000 00:00:1709987395.907116   23976 tf_tfl_flatbuffer_helpers.cc:393] Ignored drop_control_dependency.

实验量化

您的用例:使用以下 API 意味着没有受支持的部署路径。例如,TFLite 转换和内核实现仅支持 8 位量化。这些功能也处于实验阶段,不受向后兼容性的约束。

设置:DefaultDenseQuantizeConfig

实验需要使用 tfmot.quantization.keras.QuantizeConfig,它描述了如何量化层的权重、激活和输出。

以下是一个示例,它定义了与 API 默认值中 Dense 层使用的相同的 QuantizeConfig

在此示例中的前向传播期间,LastValueQuantizerget_weights_and_quantizers 中返回,并使用 layer.kernel 作为输入调用,生成一个输出。该输出通过 set_quantize_weights 中定义的逻辑,替换 Dense 层的原始前向传播中的 layer.kernel。相同的思想适用于激活和输出。

LastValueQuantizer = tfmot.quantization.keras.quantizers.LastValueQuantizer
MovingAverageQuantizer = tfmot.quantization.keras.quantizers.MovingAverageQuantizer

class DefaultDenseQuantizeConfig(tfmot.quantization.keras.QuantizeConfig):
    # Configure how to quantize weights.
    def get_weights_and_quantizers(self, layer):
      return [(layer.kernel, LastValueQuantizer(num_bits=8, symmetric=True, narrow_range=False, per_axis=False))]

    # Configure how to quantize activations.
    def get_activations_and_quantizers(self, layer):
      return [(layer.activation, MovingAverageQuantizer(num_bits=8, symmetric=False, narrow_range=False, per_axis=False))]

    def set_quantize_weights(self, layer, quantize_weights):
      # Add this line for each item returned in `get_weights_and_quantizers`
      # , in the same order
      layer.kernel = quantize_weights[0]

    def set_quantize_activations(self, layer, quantize_activations):
      # Add this line for each item returned in `get_activations_and_quantizers`
      # , in the same order.
      layer.activation = quantize_activations[0]

    # Configure how to quantize outputs (may be equivalent to activations).
    def get_output_quantizers(self, layer):
      return []

    def get_config(self):
      return {}

量化自定义 Keras 层

此示例使用 DefaultDenseQuantizeConfig 来量化 CustomLayer

在“使用量化进行实验”用例中,应用配置的方式是相同的。

quantize_annotate_layer = tfmot.quantization.keras.quantize_annotate_layer
quantize_annotate_model = tfmot.quantization.keras.quantize_annotate_model
quantize_scope = tfmot.quantization.keras.quantize_scope

class CustomLayer(keras.layers.Dense):
  pass

model = quantize_annotate_model(keras.Sequential([
   quantize_annotate_layer(CustomLayer(20, input_shape=(20,)), DefaultDenseQuantizeConfig()),
   keras.layers.Flatten()
]))

# `quantize_apply` requires mentioning `DefaultDenseQuantizeConfig` with `quantize_scope`
# as well as the custom Keras layer.
with quantize_scope(
  {'DefaultDenseQuantizeConfig': DefaultDenseQuantizeConfig,
   'CustomLayer': CustomLayer}):
  # Use `quantize_apply` to actually make the model quantization aware.
  quant_aware_model = tfmot.quantization.keras.quantize_apply(model)

quant_aware_model.summary()
Model: "sequential_8"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 quantize_layer_6 (Quantize  (None, 20)                3         
 Layer)                                                          
                                                                 
 quant_custom_layer (Quanti  (None, 20)                425       
 zeWrapperV2)                                                    
                                                                 
 quant_flatten_9 (QuantizeW  (None, 20)                1         
 rapperV2)                                                       
                                                                 
=================================================================
Total params: 429 (1.68 KB)
Trainable params: 420 (1.64 KB)
Non-trainable params: 9 (36.00 Byte)
_________________________________________________________________

修改量化参数

常见错误:将偏差量化为少于 32 位通常会极大地损害模型准确性。

此示例修改 Dense 层,使其对权重使用 4 位,而不是默认的 8 位。模型的其余部分继续使用 API 默认值。

quantize_annotate_layer = tfmot.quantization.keras.quantize_annotate_layer
quantize_annotate_model = tfmot.quantization.keras.quantize_annotate_model
quantize_scope = tfmot.quantization.keras.quantize_scope

class ModifiedDenseQuantizeConfig(DefaultDenseQuantizeConfig):
    # Configure weights to quantize with 4-bit instead of 8-bits.
    def get_weights_and_quantizers(self, layer):
      return [(layer.kernel, LastValueQuantizer(num_bits=4, symmetric=True, narrow_range=False, per_axis=False))]

在“使用量化进行实验”用例中,应用配置的方式是相同的。

model = quantize_annotate_model(keras.Sequential([
   # Pass in modified `QuantizeConfig` to modify this Dense layer.
   quantize_annotate_layer(keras.layers.Dense(20, input_shape=(20,)), ModifiedDenseQuantizeConfig()),
   keras.layers.Flatten()
]))

# `quantize_apply` requires mentioning `ModifiedDenseQuantizeConfig` with `quantize_scope`:
with quantize_scope(
  {'ModifiedDenseQuantizeConfig': ModifiedDenseQuantizeConfig}):
  # Use `quantize_apply` to actually make the model quantization aware.
  quant_aware_model = tfmot.quantization.keras.quantize_apply(model)

quant_aware_model.summary()
Model: "sequential_9"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 quantize_layer_7 (Quantize  (None, 20)                3         
 Layer)                                                          
                                                                 
 quant_dense_9 (QuantizeWra  (None, 20)                425       
 pperV2)                                                         
                                                                 
 quant_flatten_10 (Quantize  (None, 20)                1         
 WrapperV2)                                                      
                                                                 
=================================================================
Total params: 429 (1.68 KB)
Trainable params: 420 (1.64 KB)
Non-trainable params: 9 (36.00 Byte)
_________________________________________________________________

修改要量化的层部分

此示例修改 Dense 层,以跳过对激活的量化。模型的其余部分继续使用 API 默认值。

quantize_annotate_layer = tfmot.quantization.keras.quantize_annotate_layer
quantize_annotate_model = tfmot.quantization.keras.quantize_annotate_model
quantize_scope = tfmot.quantization.keras.quantize_scope

class ModifiedDenseQuantizeConfig(DefaultDenseQuantizeConfig):
    def get_activations_and_quantizers(self, layer):
      # Skip quantizing activations.
      return []

    def set_quantize_activations(self, layer, quantize_activations):
      # Empty since `get_activaations_and_quantizers` returns
      # an empty list.
      return

在“使用量化进行实验”用例中,应用配置的方式是相同的。

model = quantize_annotate_model(keras.Sequential([
   # Pass in modified `QuantizeConfig` to modify this Dense layer.
   quantize_annotate_layer(keras.layers.Dense(20, input_shape=(20,)), ModifiedDenseQuantizeConfig()),
   keras.layers.Flatten()
]))

# `quantize_apply` requires mentioning `ModifiedDenseQuantizeConfig` with `quantize_scope`:
with quantize_scope(
  {'ModifiedDenseQuantizeConfig': ModifiedDenseQuantizeConfig}):
  # Use `quantize_apply` to actually make the model quantization aware.
  quant_aware_model = tfmot.quantization.keras.quantize_apply(model)

quant_aware_model.summary()
Model: "sequential_10"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 quantize_layer_8 (Quantize  (None, 20)                3         
 Layer)                                                          
                                                                 
 quant_dense_10 (QuantizeWr  (None, 20)                423       
 apperV2)                                                        
                                                                 
 quant_flatten_11 (Quantize  (None, 20)                1         
 WrapperV2)                                                      
                                                                 
=================================================================
Total params: 427 (1.67 KB)
Trainable params: 420 (1.64 KB)
Non-trainable params: 7 (28.00 Byte)
_________________________________________________________________

使用自定义量化算法

tfmot.quantization.keras.quantizers.Quantizer 类是一个可调用类,可以将其任何算法应用于其输入。

在此示例中,输入是权重,我们将 FixedRangeQuantizer __call__ 函数中的数学运算应用于权重。现在,FixedRangeQuantizer 的输出将传递给任何使用权重的内容,而不是原始权重值。

quantize_annotate_layer = tfmot.quantization.keras.quantize_annotate_layer
quantize_annotate_model = tfmot.quantization.keras.quantize_annotate_model
quantize_scope = tfmot.quantization.keras.quantize_scope

class FixedRangeQuantizer(tfmot.quantization.keras.quantizers.Quantizer):
  """Quantizer which forces outputs to be between -1 and 1."""

  def build(self, tensor_shape, name, layer):
    # Not needed. No new TensorFlow variables needed.
    return {}

  def __call__(self, inputs, training, weights, **kwargs):
    return keras.backend.clip(inputs, -1.0, 1.0)

  def get_config(self):
    # Not needed. No __init__ parameters to serialize.
    return {}


class ModifiedDenseQuantizeConfig(DefaultDenseQuantizeConfig):
    # Configure weights to quantize with 4-bit instead of 8-bits.
    def get_weights_and_quantizers(self, layer):
      # Use custom algorithm defined in `FixedRangeQuantizer` instead of default Quantizer.
      return [(layer.kernel, FixedRangeQuantizer())]

在“使用量化进行实验”用例中,应用配置的方式是相同的。

model = quantize_annotate_model(keras.Sequential([
   # Pass in modified `QuantizeConfig` to modify this `Dense` layer.
   quantize_annotate_layer(keras.layers.Dense(20, input_shape=(20,)), ModifiedDenseQuantizeConfig()),
   keras.layers.Flatten()
]))

# `quantize_apply` requires mentioning `ModifiedDenseQuantizeConfig` with `quantize_scope`:
with quantize_scope(
  {'ModifiedDenseQuantizeConfig': ModifiedDenseQuantizeConfig}):
  # Use `quantize_apply` to actually make the model quantization aware.
  quant_aware_model = tfmot.quantization.keras.quantize_apply(model)

quant_aware_model.summary()
Model: "sequential_11"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 quantize_layer_9 (Quantize  (None, 20)                3         
 Layer)                                                          
                                                                 
 quant_dense_11 (QuantizeWr  (None, 20)                423       
 apperV2)                                                        
                                                                 
 quant_flatten_12 (Quantize  (None, 20)                1         
 WrapperV2)                                                      
                                                                 
=================================================================
Total params: 427 (1.67 KB)
Trainable params: 420 (1.64 KB)
Non-trainable params: 7 (28.00 Byte)
_________________________________________________________________