修剪综合指南

在 TensorFlow.org 上查看 在 Google Colab 中运行 在 GitHub 上查看源代码 下载笔记本

欢迎来到 Keras 权重修剪的综合指南。

此页面记录了各种用例,并展示了如何为每个用例使用 API。 了解所需 API 后,请在 API 文档 中查找参数和低级详细信息。

  • 如果您想了解修剪的好处以及支持的内容,请参阅 概述
  • 有关单个端到端示例,请参阅 修剪示例

涵盖以下用例

  • 定义和训练修剪后的模型。
    • 顺序和函数式。
    • Keras 模型。fit 和自定义训练循环
  • 检查点和反序列化修剪后的模型。
  • 部署修剪后的模型并查看压缩优势。

有关修剪算法的配置,请参阅 tfmot.sparsity.keras.prune_low_magnitude API 文档。

设置

要查找所需的 API 并了解用途,您可以运行但跳过阅读本节。

! pip install -q tensorflow-model-optimization

import tensorflow as tf
import numpy as np
import tensorflow_model_optimization as tfmot
import tf_keras as keras

%load_ext tensorboard

import tempfile

input_shape = [20]
x_train = np.random.randn(1, 20).astype(np.float32)
y_train = keras.utils.to_categorical(np.random.randn(1), num_classes=20)

def setup_model():
  model = keras.Sequential([
      keras.layers.Dense(20, input_shape=input_shape),
      keras.layers.Flatten()
  ])
  return model

def setup_pretrained_weights():
  model = setup_model()

  model.compile(
      loss=keras.losses.categorical_crossentropy,
      optimizer='adam',
      metrics=['accuracy']
  )

  model.fit(x_train, y_train)

  _, pretrained_weights = tempfile.mkstemp('.tf')

  model.save_weights(pretrained_weights)

  return pretrained_weights

def get_gzipped_model_size(model):
  # Returns size of gzipped model, in bytes.
  import os
  import zipfile

  _, keras_file = tempfile.mkstemp('.h5')
  model.save(keras_file, include_optimizer=False)

  _, zipped_file = tempfile.mkstemp('.zip')
  with zipfile.ZipFile(zipped_file, 'w', compression=zipfile.ZIP_DEFLATED) as f:
    f.write(keras_file)

  return os.path.getsize(zipped_file)

setup_model()
pretrained_weights = setup_pretrained_weights()
2024-03-09 12:22:11.550860: E external/local_xla/xla/stream_executor/cuda/cuda_driver.cc:282] failed call to cuInit: CUDA_ERROR_NO_DEVICE: no CUDA-capable device is detected

定义模型

修剪整个模型(顺序和函数式)

提高模型精度的技巧

  • 尝试“修剪某些层”以跳过修剪对精度影响最大的层。
  • 通常,与从头开始训练相比,使用修剪进行微调更好。

要使整个模型使用修剪进行训练,请将 tfmot.sparsity.keras.prune_low_magnitude 应用于模型。

base_model = setup_model()
base_model.load_weights(pretrained_weights) # optional but recommended.

model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(base_model)

model_for_pruning.summary()
Model: "sequential_2"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 prune_low_magnitude_dense_  (None, 20)                822       
 2 (PruneLowMagnitude)                                           
                                                                 
 prune_low_magnitude_flatte  (None, 20)                1         
 n_2 (PruneLowMagnitude)                                         
                                                                 
=================================================================
Total params: 823 (3.22 KB)
Trainable params: 420 (1.64 KB)
Non-trainable params: 403 (1.58 KB)
_________________________________________________________________

修剪某些层(顺序和函数式)

修剪模型可能会对精度产生负面影响。 您可以选择性地修剪模型的层,以探索精度、速度和模型大小之间的权衡。

提高模型精度的技巧

  • 通常,与从头开始训练相比,使用修剪进行微调更好。
  • 尝试修剪后面的层而不是前面的层。
  • 避免修剪关键层(例如注意力机制)。

更多:

在下面的示例中,仅修剪 Dense 层。

# Create a base model
base_model = setup_model()
base_model.load_weights(pretrained_weights) # optional but recommended for model accuracy

# Helper function uses `prune_low_magnitude` to make only the 
# Dense layers train with pruning.
def apply_pruning_to_dense(layer):
  if isinstance(layer, keras.layers.Dense):
    return tfmot.sparsity.keras.prune_low_magnitude(layer)
  return layer

# Use `keras.models.clone_model` to apply `apply_pruning_to_dense` 
# to the layers of the model.
model_for_pruning = keras.models.clone_model(
    base_model,
    clone_function=apply_pruning_to_dense,
)

model_for_pruning.summary()
WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://tensorflowcn.cn/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function.
WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://tensorflowcn.cn/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function.
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._iterations
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._iterations
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._learning_rate
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._learning_rate
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4
Model: "sequential_3"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 prune_low_magnitude_dense_  (None, 20)                822       
 3 (PruneLowMagnitude)                                           
                                                                 
 flatten_3 (Flatten)         (None, 20)                0         
                                                                 
=================================================================
Total params: 822 (3.21 KB)
Trainable params: 420 (1.64 KB)
Non-trainable params: 402 (1.57 KB)
_________________________________________________________________

虽然此示例使用层类型来决定要修剪的内容,但修剪特定层的最简单方法是设置其 name 属性,并在 clone_function 中查找该名称。

print(base_model.layers[0].name)
dense_3

更易读,但模型精度可能较低

这与使用修剪进行微调不兼容,因此它可能不如支持微调的上述示例准确。

虽然 prune_low_magnitude 可以在定义初始模型时应用,但在下面的示例中,加载权重后不起作用。

函数式示例

# Use `prune_low_magnitude` to make the `Dense` layer train with pruning.
i = keras.Input(shape=(20,))
x = tfmot.sparsity.keras.prune_low_magnitude(keras.layers.Dense(10))(i)
o = keras.layers.Flatten()(x)
model_for_pruning = keras.Model(inputs=i, outputs=o)

model_for_pruning.summary()
Model: "model"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 input_1 (InputLayer)        [(None, 20)]              0         
                                                                 
 prune_low_magnitude_dense_  (None, 10)                412       
 4 (PruneLowMagnitude)                                           
                                                                 
 flatten_4 (Flatten)         (None, 10)                0         
                                                                 
=================================================================
Total params: 412 (1.61 KB)
Trainable params: 210 (840.00 Byte)
Non-trainable params: 202 (812.00 Byte)
_________________________________________________________________

顺序示例

# Use `prune_low_magnitude` to make the `Dense` layer train with pruning.
model_for_pruning = keras.Sequential([
  tfmot.sparsity.keras.prune_low_magnitude(keras.layers.Dense(20, input_shape=input_shape)),
  keras.layers.Flatten()
])

model_for_pruning.summary()
Model: "sequential_4"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 prune_low_magnitude_dense_  (None, 20)                822       
 5 (PruneLowMagnitude)                                           
                                                                 
 flatten_5 (Flatten)         (None, 20)                0         
                                                                 
=================================================================
Total params: 822 (3.21 KB)
Trainable params: 420 (1.64 KB)
Non-trainable params: 402 (1.57 KB)
_________________________________________________________________

修剪自定义 Keras 层或修改要修剪的层的部分

常见错误: 修剪偏差通常会严重损害模型精度。

tfmot.sparsity.keras.PrunableLayer 服务于两种用例

  1. 修剪自定义 Keras 层
  2. 修改内置 Keras 层的部分以进行修剪。

例如,API 默认仅修剪 Dense 层的内核。 下面的示例还修剪了偏差。

class MyDenseLayer(keras.layers.Dense, tfmot.sparsity.keras.PrunableLayer):

  def get_prunable_weights(self):
    # Prune bias also, though that usually harms model accuracy too much.
    return [self.kernel, self.bias]

# Use `prune_low_magnitude` to make the `MyDenseLayer` layer train with pruning.
model_for_pruning = keras.Sequential([
  tfmot.sparsity.keras.prune_low_magnitude(MyDenseLayer(20, input_shape=input_shape)),
  keras.layers.Flatten()
])

model_for_pruning.summary()
Model: "sequential_5"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 prune_low_magnitude_my_den  (None, 20)                843       
 se_layer (PruneLowMagnitud                                      
 e)                                                              
                                                                 
 flatten_6 (Flatten)         (None, 20)                0         
                                                                 
=================================================================
Total params: 843 (3.30 KB)
Trainable params: 420 (1.64 KB)
Non-trainable params: 423 (1.66 KB)
_________________________________________________________________

训练模型

Model.fit

在训练期间调用 tfmot.sparsity.keras.UpdatePruningStep 回调。

为了帮助调试训练,请使用 tfmot.sparsity.keras.PruningSummaries 回调。

# Define the model.
base_model = setup_model()
base_model.load_weights(pretrained_weights) # optional but recommended for model accuracy
model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(base_model)

log_dir = tempfile.mkdtemp()
callbacks = [
    tfmot.sparsity.keras.UpdatePruningStep(),
    # Log sparsity and other metrics in Tensorboard.
    tfmot.sparsity.keras.PruningSummaries(log_dir=log_dir)
]

model_for_pruning.compile(
      loss=keras.losses.categorical_crossentropy,
      optimizer='adam',
      metrics=['accuracy']
)

model_for_pruning.fit(
    x_train,
    y_train,
    callbacks=callbacks,
    epochs=2,
)

#docs_infra: no_execute
%tensorboard --logdir={log_dir}

对于非 Colab 用户,您可以在 TensorBoard.dev 上查看此代码块的先前运行结果

自定义训练循环

在训练期间调用 tfmot.sparsity.keras.UpdatePruningStep 回调。

为了帮助调试训练,请使用 tfmot.sparsity.keras.PruningSummaries 回调。

# Define the model.
base_model = setup_model()
base_model.load_weights(pretrained_weights) # optional but recommended for model accuracy
model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(base_model)

# Boilerplate
loss = keras.losses.categorical_crossentropy
optimizer = keras.optimizers.Adam()
log_dir = tempfile.mkdtemp()
unused_arg = -1
epochs = 2
batches = 1 # example is hardcoded so that the number of batches cannot change.

# Non-boilerplate.
model_for_pruning.optimizer = optimizer
step_callback = tfmot.sparsity.keras.UpdatePruningStep()
step_callback.set_model(model_for_pruning)
log_callback = tfmot.sparsity.keras.PruningSummaries(log_dir=log_dir) # Log sparsity and other metrics in Tensorboard.
log_callback.set_model(model_for_pruning)

step_callback.on_train_begin() # run pruning callback
for _ in range(epochs):
  log_callback.on_epoch_begin(epoch=unused_arg) # run pruning callback
  for _ in range(batches):
    step_callback.on_train_batch_begin(batch=unused_arg) # run pruning callback

    with tf.GradientTape() as tape:
      logits = model_for_pruning(x_train, training=True)
      loss_value = loss(y_train, logits)
      grads = tape.gradient(loss_value, model_for_pruning.trainable_variables)
      optimizer.apply_gradients(zip(grads, model_for_pruning.trainable_variables))

  step_callback.on_epoch_end(batch=unused_arg) # run pruning callback

#docs_infra: no_execute
%tensorboard --logdir={log_dir}

对于非 Colab 用户,您可以在 TensorBoard.dev 上查看此代码块的先前运行结果

提高修剪后的模型精度

首先,查看 tfmot.sparsity.keras.prune_low_magnitude API 文档,了解修剪计划是什么以及每种修剪计划的数学原理。

技巧:

  • 在模型进行修剪时,使用不太高或不太低的学习率。 将 修剪计划 视为超参数。

  • 作为快速测试,尝试在训练开始时将模型修剪到最终稀疏度,方法是将 begin_step 设置为 0,并使用 tfmot.sparsity.keras.ConstantSparsity 计划。您可能会幸运地获得良好的结果。

  • 不要频繁修剪,以便模型有时间恢复。 修剪计划 提供了相当不错的默认频率。

  • 有关提高模型准确性的通用想法,请在“定义模型”下查找适合您的用例的提示。

检查点和反序列化

您必须在检查点过程中保留优化器步骤。这意味着虽然您可以使用 Keras HDF5 模型进行检查点,但不能使用 Keras HDF5 权重。

# Define the model.
base_model = setup_model()
base_model.load_weights(pretrained_weights) # optional but recommended for model accuracy
model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(base_model)

_, keras_model_file = tempfile.mkstemp('.h5')

# Checkpoint: saving the optimizer is necessary (include_optimizer=True is the default).
model_for_pruning.save(keras_model_file, include_optimizer=True)
WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://tensorflowcn.cn/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function.
WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://tensorflowcn.cn/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function.
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._iterations
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._iterations
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._learning_rate
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._learning_rate
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
/tmpfs/src/tf_docs_env/lib/python3.9/site-packages/tf_keras/src/engine/training.py:3098: UserWarning: You are saving your model as an HDF5 file via `model.save()`. This file format is considered legacy. We recommend using instead the native TF-Keras format, e.g. `model.save('my_model.keras')`.
  saving_api.save_model(
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.

以上内容普遍适用。以下代码仅适用于 HDF5 模型格式(不适用于 HDF5 权重和其他格式)。

# Deserialize model.
with tfmot.sparsity.keras.prune_scope():
  loaded_model = keras.models.load_model(keras_model_file)

loaded_model.summary()
WARNING:tensorflow:No training configuration found in the save file, so the model was *not* compiled. Compile it manually.
WARNING:tensorflow:No training configuration found in the save file, so the model was *not* compiled. Compile it manually.
Model: "sequential_6"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 prune_low_magnitude_dense_  (None, 20)                822       
 6 (PruneLowMagnitude)                                           
                                                                 
 prune_low_magnitude_flatte  (None, 20)                1         
 n_7 (PruneLowMagnitude)                                         
                                                                 
=================================================================
Total params: 823 (3.22 KB)
Trainable params: 420 (1.64 KB)
Non-trainable params: 403 (1.58 KB)
_________________________________________________________________

部署修剪后的模型

导出具有大小压缩的模型

常见错误strip_pruning 和应用标准压缩算法(例如通过 gzip)都是必要的,才能看到修剪的压缩优势。

# Define the model.
base_model = setup_model()
base_model.load_weights(pretrained_weights) # optional but recommended for model accuracy
model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(base_model)

# Typically you train the model here.

model_for_export = tfmot.sparsity.keras.strip_pruning(model_for_pruning)

print("final model")
model_for_export.summary()

print("\n")
print("Size of gzipped pruned model without stripping: %.2f bytes" % (get_gzipped_model_size(model_for_pruning)))
print("Size of gzipped pruned model with stripping: %.2f bytes" % (get_gzipped_model_size(model_for_export)))
WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://tensorflowcn.cn/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function.
WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://tensorflowcn.cn/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function.
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._iterations
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._iterations
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._learning_rate
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._learning_rate
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4
final model
Model: "sequential_7"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 dense_7 (Dense)             (None, 20)                420       
                                                                 
 flatten_8 (Flatten)         (None, 20)                0         
                                                                 
=================================================================
Total params: 420 (1.64 KB)
Trainable params: 420 (1.64 KB)
Non-trainable params: 0 (0.00 Byte)
_________________________________________________________________


WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
Size of gzipped pruned model without stripping: 3455.00 bytes
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
WARNING:tensorflow:Compiled the loaded model, but the compiled metrics have yet to be built. `model.compile_metrics` will be empty until you train or evaluate the model.
Size of gzipped pruned model with stripping: 2939.00 bytes

特定于硬件的优化

一旦不同的后端 启用修剪以提高延迟,使用块稀疏性可以提高某些硬件的延迟。

增加块大小将降低目标模型精度可实现的峰值稀疏度。尽管如此,延迟仍然可以提高。

有关块稀疏性支持内容的详细信息,请参阅 tfmot.sparsity.keras.prune_low_magnitude API 文档。

base_model = setup_model()

# For using intrinsics on a CPU with 128-bit registers, together with 8-bit
# quantized weights, a 1x16 block size is nice because the block perfectly
# fits into the register.
pruning_params = {'block_size': [1, 16]}
model_for_pruning = tfmot.sparsity.keras.prune_low_magnitude(base_model, **pruning_params)

model_for_pruning.summary()
WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://tensorflowcn.cn/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function.
WARNING:tensorflow:Detecting that an object or model or tf.train.Checkpoint is being deleted with unrestored values. See the following logs for the specific values in question. To silence these warnings, use `status.expect_partial()`. See https://tensorflowcn.cn/api_docs/python/tf/train/Checkpoint#restorefor details about the status object returned by the restore function.
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._iterations
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._iterations
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._learning_rate
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._learning_rate
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.1
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.2
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.3
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4
WARNING:tensorflow:Value in checkpoint could not be found in the restored object: (root).optimizer._variables.4
Model: "sequential_8"
_________________________________________________________________
 Layer (type)                Output Shape              Param #   
=================================================================
 prune_low_magnitude_dense_  (None, 20)                822       
 8 (PruneLowMagnitude)                                           
                                                                 
 prune_low_magnitude_flatte  (None, 20)                1         
 n_9 (PruneLowMagnitude)                                         
                                                                 
=================================================================
Total params: 823 (3.22 KB)
Trainable params: 420 (1.64 KB)
Non-trainable params: 403 (1.58 KB)
_________________________________________________________________