TensorFlow Lite 任务库 在相同的基础设施之上提供预构建的本机/Android/iOS API,该基础设施抽象了 TensorFlow。如果您的模型不受现有任务库的支持,您可以扩展任务 API 基础设施来构建自定义 API。
概述
任务 API 基础设施具有两层结构:底层 C++ 层封装了本机 TFLite 运行时,顶层 Java/ObjC 层通过 JNI 或本机包装器与 C++ 层通信。
在 C++ 中实现所有 TensorFlow 逻辑可最大限度地降低成本,最大限度地提高推理性能并简化跨平台的整体工作流程。
要创建任务类,请扩展 BaseTaskApi 以提供 TFLite 模型接口和任务 API 接口之间的转换逻辑,然后使用 Java/ObjC 实用程序创建相应的 API。隐藏了所有 TensorFlow 细节,您可以在应用程序中部署 TFLite 模型,而无需任何机器学习知识。
TensorFlow Lite 为大多数流行的 视觉和 NLP 任务 提供了一些预构建的 API。您可以使用任务 API 基础设施为其他任务构建自己的 API。
使用任务 API 基础设施构建您自己的 API
C++ API
所有 TFLite 细节都在本机 API 中实现。通过使用其中一个工厂函数创建 API 对象,并通过调用接口中定义的函数获取模型结果。
示例用法
以下是一个使用 C++ BertQuestionAnswerer
的示例,用于 MobileBert。
char kBertModelPath[] = "path/to/model.tflite";
// Create the API from a model file
std::unique_ptr<BertQuestionAnswerer> question_answerer =
BertQuestionAnswerer::CreateFromFile(kBertModelPath);
char kContext[] = ...; // context of a question to be answered
char kQuestion[] = ...; // question to be answered
// ask a question
std::vector<QaAnswer> answers = question_answerer.Answer(kContext, kQuestion);
// answers[0].text is the best answer
构建 API
要构建 API 对象,您必须通过扩展 BaseTaskApi
提供以下信息
确定 API I/O - 您的 API 应在不同平台上公开类似的输入/输出。例如,
BertQuestionAnswerer
接受两个字符串(std::string& context, std::string& question)
作为输入,并输出可能的答案和概率的向量,作为std::vector<QaAnswer>
。这是通过在BaseTaskApi
的 模板参数 中指定相应的类型来完成的。指定了模板参数后,BaseTaskApi::Infer
函数将具有正确的输入/输出类型。此函数可以直接由 API 客户端调用,但最好将其包装在模型特定函数中,在本例中为BertQuestionAnswerer::Answer
。class BertQuestionAnswerer : public BaseTaskApi<
std::vector<QaAnswer>, // OutputType
const std::string&, const std::string& // InputTypes
> {
// Model specific function delegating calls to BaseTaskApi::Infer
std::vector<QaAnswer> Answer(const std::string& context, const std::string& question) {
return Infer(context, question).value();
}
}提供 API I/O 和模型的输入/输出张量之间的转换逻辑 - 指定了输入和输出类型后,子类还需要实现类型化函数
BaseTaskApi::Preprocess
和BaseTaskApi::Postprocess
。这两个函数提供来自 TFLiteFlatBuffer
的 输入 和 输出。子类负责将 API I/O 中的值分配给 I/O 张量。请参阅BertQuestionAnswerer
中的完整实现示例。class BertQuestionAnswerer : public BaseTaskApi<
std::vector<QaAnswer>, // OutputType
const std::string&, const std::string& // InputTypes
> {
// Convert API input into tensors
absl::Status BertQuestionAnswerer::Preprocess(
const std::vector<TfLiteTensor*>& input_tensors, // input tensors of the model
const std::string& context, const std::string& query // InputType of the API
) {
// Perform tokenization on input strings
...
// Populate IDs, Masks and SegmentIDs to corresponding input tensors
PopulateTensor(input_ids, input_tensors[0]);
PopulateTensor(input_mask, input_tensors[1]);
PopulateTensor(segment_ids, input_tensors[2]);
return absl::OkStatus();
}
// Convert output tensors into API output
StatusOr<std::vector<QaAnswer>> // OutputType
BertQuestionAnswerer::Postprocess(
const std::vector<const TfLiteTensor*>& output_tensors, // output tensors of the model
) {
// Get start/end logits of prediction result from output tensors
std::vector<float> end_logits;
std::vector<float> start_logits;
// output_tensors[0]: end_logits FLOAT[1, 384]
PopulateVector(output_tensors[0], &end_logits);
// output_tensors[1]: start_logits FLOAT[1, 384]
PopulateVector(output_tensors[1], &start_logits);
...
std::vector<QaAnswer::Pos> orig_results;
// Look up the indices from vocabulary file and build results
...
return orig_results;
}
}创建 API 的工厂函数 - 初始化
tflite::Interpreter
需要一个模型文件和一个OpResolver
。TaskAPIFactory
提供了创建 BaseTaskApi 实例的实用函数。您还必须提供与模型关联的任何文件。例如,
BertQuestionAnswerer
还可以为其分词器的词汇表提供一个额外的文件。class BertQuestionAnswerer : public BaseTaskApi<
std::vector<QaAnswer>, // OutputType
const std::string&, const std::string& // InputTypes
> {
// Factory function to create the API instance
StatusOr<std::unique_ptr<QuestionAnswerer>>
BertQuestionAnswerer::CreateBertQuestionAnswerer(
const std::string& path_to_model, // model to passed to TaskApiFactory
const std::string& path_to_vocab // additional model specific files
) {
// Creates an API object by calling one of the utils from TaskAPIFactory
std::unique_ptr<BertQuestionAnswerer> api_to_init;
ASSIGN_OR_RETURN(
api_to_init,
core::TaskAPIFactory::CreateFromFile<BertQuestionAnswerer>(
path_to_model,
absl::make_unique<tflite::ops::builtin::BuiltinOpResolver>(),
kNumLiteThreads));
// Perform additional model specific initializations
// In this case building a vocabulary vector from the vocab file.
api_to_init->InitializeVocab(path_to_vocab);
return api_to_init;
}
}
Android API
通过定义 Java/Kotlin 接口并将逻辑通过 JNI 委托给 C++ 层来创建 Android API。Android API 要求首先构建本地 API。
示例用法
以下是一个使用 Java BertQuestionAnswerer
用于 MobileBert 的示例。
String BERT_MODEL_FILE = "path/to/model.tflite";
String VOCAB_FILE = "path/to/vocab.txt";
// Create the API from a model file and vocabulary file
BertQuestionAnswerer bertQuestionAnswerer =
BertQuestionAnswerer.createBertQuestionAnswerer(
ApplicationProvider.getApplicationContext(), BERT_MODEL_FILE, VOCAB_FILE);
String CONTEXT = ...; // context of a question to be answered
String QUESTION = ...; // question to be answered
// ask a question
List<QaAnswer> answers = bertQuestionAnswerer.answer(CONTEXT, QUESTION);
// answers.get(0).text is the best answer
构建 API
与本地 API 类似,要构建 API 对象,客户端需要通过扩展 BaseTaskApi
来提供以下信息,该类为所有 Java 任务 API 提供了 JNI 处理。
确定 API I/O - 这通常反映本地接口。例如,
BertQuestionAnswerer
以(String context, String question)
作为输入,并输出List<QaAnswer>
。实现调用具有类似签名的私有本地函数,除了它有一个额外的参数long nativeHandle
,它是从 C++ 返回的指针。class BertQuestionAnswerer extends BaseTaskApi {
public List<QaAnswer> answer(String context, String question) {
return answerNative(getNativeHandle(), context, question);
}
private static native List<QaAnswer> answerNative(
long nativeHandle, // C++ pointer
String context, String question // API I/O
);
}创建 API 的工厂函数 - 这也反映了本地工厂函数,除了 Android 工厂函数还需要接受
Context
用于文件访问。实现调用TaskJniUtils
中的某个实用程序来构建相应的 C++ API 对象,并将它的指针传递给BaseTaskApi
构造函数。class BertQuestionAnswerer extends BaseTaskApi {
private static final String BERT_QUESTION_ANSWERER_NATIVE_LIBNAME =
"bert_question_answerer_jni";
// Extending super constructor by providing the
// native handle(pointer of corresponding C++ API object)
private BertQuestionAnswerer(long nativeHandle) {
super(nativeHandle);
}
public static BertQuestionAnswerer createBertQuestionAnswerer(
Context context, // Accessing Android files
String pathToModel, String pathToVocab) {
return new BertQuestionAnswerer(
// The util first try loads the JNI module with name
// BERT_QUESTION_ANSWERER_NATIVE_LIBNAME, then opens two files,
// converts them into ByteBuffer, finally ::initJniWithBertByteBuffers
// is called with the buffer for a C++ API object pointer
TaskJniUtils.createHandleWithMultipleAssetFilesFromLibrary(
context,
BertQuestionAnswerer::initJniWithBertByteBuffers,
BERT_QUESTION_ANSWERER_NATIVE_LIBNAME,
pathToModel,
pathToVocab));
}
// modelBuffers[0] is tflite model file buffer, and modelBuffers[1] is vocab file buffer.
// returns C++ API object pointer casted to long
private static native long initJniWithBertByteBuffers(ByteBuffer... modelBuffers);
}实现本地函数的 JNI 模块 - 所有 Java 本地方法都是通过调用 JNI 模块中的相应本地函数来实现的。工厂函数将创建一个本地 API 对象,并将它的指针作为 long 类型返回给 Java。在以后对 Java API 的调用中,long 类型指针将被传递回 JNI 并被强制转换为本地 API 对象。然后,本地 API 结果将被转换回 Java 结果。
例如,这就是 bert_question_answerer_jni 的实现方式。
// Implements BertQuestionAnswerer::initJniWithBertByteBuffers
extern "C" JNIEXPORT jlong JNICALL
Java_org_tensorflow_lite_task_text_qa_BertQuestionAnswerer_initJniWithBertByteBuffers(
JNIEnv* env, jclass thiz, jobjectArray model_buffers) {
// Convert Java ByteBuffer object into a buffer that can be read by native factory functions
absl::string_view model =
GetMappedFileBuffer(env, env->GetObjectArrayElement(model_buffers, 0));
// Creates the native API object
absl::StatusOr<std::unique_ptr<QuestionAnswerer>> status =
BertQuestionAnswerer::CreateFromBuffer(
model.data(), model.size());
if (status.ok()) {
// converts the object pointer to jlong and return to Java.
return reinterpret_cast<jlong>(status->release());
} else {
return kInvalidPointer;
}
}
// Implements BertQuestionAnswerer::answerNative
extern "C" JNIEXPORT jobject JNICALL
Java_org_tensorflow_lite_task_text_qa_BertQuestionAnswerer_answerNative(
JNIEnv* env, jclass thiz, jlong native_handle, jstring context, jstring question) {
// Convert long to native API object pointer
QuestionAnswerer* question_answerer = reinterpret_cast<QuestionAnswerer*>(native_handle);
// Calls the native API
std::vector<QaAnswer> results = question_answerer->Answer(JStringToString(env, context),
JStringToString(env, question));
// Converts native result(std::vector<QaAnswer>) to Java result(List<QaAnswerer>)
jclass qa_answer_class =
env->FindClass("org/tensorflow/lite/task/text/qa/QaAnswer");
jmethodID qa_answer_ctor =
env->GetMethodID(qa_answer_class, "<init>", "(Ljava/lang/String;IIF)V");
return ConvertVectorToArrayList<QaAnswer>(
env, results,
[env, qa_answer_class, qa_answer_ctor](const QaAnswer& ans) {
jstring text = env->NewStringUTF(ans.text.data());
jobject qa_answer =
env->NewObject(qa_answer_class, qa_answer_ctor, text, ans.pos.start,
ans.pos.end, ans.pos.logit);
env->DeleteLocalRef(text);
return qa_answer;
});
}
// Implements BaseTaskApi::deinitJni by delete the native object
extern "C" JNIEXPORT void JNICALL Java_task_core_BaseTaskApi_deinitJni(
JNIEnv* env, jobject thiz, jlong native_handle) {
delete reinterpret_cast<QuestionAnswerer*>(native_handle);
}
iOS API
通过将本地 API 对象包装到 ObjC API 对象中来创建 iOS API。创建的 API 对象可以在 ObjC 或 Swift 中使用。iOS API 要求首先构建本地 API。
示例用法
以下是一个使用 ObjC TFLBertQuestionAnswerer
用于 MobileBert 的 Swift 示例。
static let mobileBertModelPath = "path/to/model.tflite";
// Create the API from a model file and vocabulary file
let mobileBertAnswerer = TFLBertQuestionAnswerer.mobilebertQuestionAnswerer(
modelPath: mobileBertModelPath)
static let context = ...; // context of a question to be answered
static let question = ...; // question to be answered
// ask a question
let answers = mobileBertAnswerer.answer(
context: TFLBertQuestionAnswererTest.context, question: TFLBertQuestionAnswererTest.question)
// answers.[0].text is the best answer
构建 API
iOS API 是在本地 API 之上的一个简单的 ObjC 包装器。按照以下步骤构建 API
定义 ObjC 包装器 - 定义一个 ObjC 类并将实现委托给相应的本地 API 对象。请注意,由于 Swift 无法与 C++ 交互,因此本地依赖项只能出现在 .mm 文件中。
- .h 文件
@interface TFLBertQuestionAnswerer : NSObject
// Delegate calls to the native BertQuestionAnswerer::CreateBertQuestionAnswerer
+ (instancetype)mobilebertQuestionAnswererWithModelPath:(NSString*)modelPath
vocabPath:(NSString*)vocabPath
NS_SWIFT_NAME(mobilebertQuestionAnswerer(modelPath:vocabPath:));
// Delegate calls to the native BertQuestionAnswerer::Answer
- (NSArray<TFLQAAnswer*>*)answerWithContext:(NSString*)context
question:(NSString*)question
NS_SWIFT_NAME(answer(context:question:));
}- .mm 文件
using BertQuestionAnswererCPP = ::tflite::task::text::BertQuestionAnswerer;
@implementation TFLBertQuestionAnswerer {
// define an iVar for the native API object
std::unique_ptr<QuestionAnswererCPP> _bertQuestionAnswerwer;
}
// Initialize the native API object
+ (instancetype)mobilebertQuestionAnswererWithModelPath:(NSString *)modelPath
vocabPath:(NSString *)vocabPath {
absl::StatusOr<std::unique_ptr<QuestionAnswererCPP>> cQuestionAnswerer =
BertQuestionAnswererCPP::CreateBertQuestionAnswerer(MakeString(modelPath),
MakeString(vocabPath));
_GTMDevAssert(cQuestionAnswerer.ok(), @"Failed to create BertQuestionAnswerer");
return [[TFLBertQuestionAnswerer alloc]
initWithQuestionAnswerer:std::move(cQuestionAnswerer.value())];
}
// Calls the native API and converts C++ results into ObjC results
- (NSArray<TFLQAAnswer *> *)answerWithContext:(NSString *)context question:(NSString *)question {
std::vector<QaAnswerCPP> results =
_bertQuestionAnswerwer->Answer(MakeString(context), MakeString(question));
return [self arrayFromVector:results];
}
}